Bibliography [1] FIELDVIEW Reference Manual, Software Release Version 10. Intel

Bibliography [1] FIELDVIEW Reference Manual, Software Release Version 10. Intelligent Light, 2004. [2] KINetics for Fluent, Version 1.0. Reaction Design, Inc., San Diego, CA, 2004. [3] P.J. O’Rourke A. A. Amsden and T. D. Butler. KIVA-2: A Computer Program for Chemically Reactive Flows with Sprays. Technical Report LA-11560-MS, UC-96, Los Alamos National Laboratory, Los Alamos, New Mexico, May 1989. [4] A. Perera A. Antifora, M. Sala and L. Vigevano. NOx Emissions in Combustion Systems of Coal Fired Furnaces with a Reducing Environment: Predictions and Measurements. In Fourth International Conference on Technologies and Combus- tion for a Clean Environment, Lisbon, Portugal, 1997. [5] T. Ahmad, S. L. Plee, and J. P. Myers. Computation of Nitric Oxide and Soot Emissions from Turbulent Diffusion Flames. J. of Engineering for Gas Turbines and Power, 107:48–53, 1985. [6] B. J. Alder and T. E. Wainright. Studies in Molecular Dynamics. II: Behaviour of Small Number of Spheres. J. Chem. Phys., 33:1439, 1960. [7] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics II: Behaviour of a Small Number of Elastic Spheres. J. Chem. Phys., 33:1439, 1990. [8] A. A. Amsden. KIVA-3: A KIVA Program with Block-Structured Mesh for Com- plex Geometries. Technical Report LA-12503-MS, UC-361, Los Alamos National Laboratory, Los Alamos, New Mexico, March 1993. [9] T. B. Anderson and R. Jackson. A Fluid Mechanical Description of Fluidized Beds. I & EC Fundam., 6:527–534, 1967. [10] S. Armsfield and R. Street. The Fractional-Step Method for the Navier-Stokes Equations on Staggered Grids: Accuracy of Three Variations. Journal of Compu- tational Physics, 153:660–665, 1999. [11] R. H. Augnier. A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications. Journal of Fluids Engineering, 117:277–281, 1995. [12] F. Backmier, K. H. Eberius, and T. Just. Comb. Sci. Tech., 7:77, 1973. c ⃝Fluent Inc. January 11, 2005 Bib-1 BIBLIOGRAPHY [13] S. Badzioch and P. G. W. Hawksley. Kinetics of Thermal Decomposition of Pulver- ized Coal Particles. Ind. Eng. Chem. Process Design and Development, 9:521–530, 1970. [14] R. S. Barlow, G. J. Fiechtner, C. D. Carter, and J. Y. Chen. Experiments on the Scalar Structure of Turbulent CO/H2/N2 Jet Flames. Combustion and Flame, 120:549–569, 2000. [15] F. J. Barnes, J. H. Bromly, T. J. Edwards, and R. Madngezewsky. NOx Emissions from Radiant Gas Burners. Journal of the Institute of Energy, 155:184–188, 1988. [16] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, Pennsylvania, 2nd edition edition, 1994. [17] T. J. Barth and D. Jespersen. The design and application of upwind schemes on unstructured meshes. Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada, 1989. [18] H. Barths, C. Antoni, and N. Peters. Three-Dimensional Simulation of Pollutant Formation in a DI-Diesel Engine Using Multiple Interactive Flamelets. SAE Paper, accepted for publication 1998. [19] H. Barths et al. Simulation of Pollutant Formation in a Gas Turbine Combustor Using Unsteady Flamelets. In 27th Symp. (Int’l.) on Combustion. The Combustion Institute, accepted for publication 1998. [20] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Univ. Press, Cambridge, England, 1967. [21] D. L. Baulch, D. D. Drysdall, D. G. Horne, and A. C. Lloyd. Evaluated Kinetic Data for High Temperature Reactions, volume 1,2,3. Butterworth, 1973. [22] D. L. Baulch et al. Evaluated Kinetic Data for Combustion Modelling. J. Physical and Chemical Reference Data, 21(3), 1992. [23] M. M. Baum and P. J. Street. Predicting the Combustion Behavior of Coal Parti- cles. Combust. Sci. Tech., 3(5):231–243, 1971. [24] L. L. Baxter. Turbulent Transport of Particles. PhD thesis, Brigham Young Uni- versity, Provo, Utah, 1989. [25] L. L. Baxter and P. J. Smith. Turbulent Dispersion of Particles: The STP Model. Energy & Fuels, 7:852–859, 1993. [26] W. Bechara, C. Bailly, P. Lafon, and S. Candel. Stochastic Approach to Noise Modeling for Free Turbulent Flows. AIAA Journal, 32:3, 1994. Bib-2 c ⃝Fluent Inc. January 11, 2005 BIBLIOGRAPHY [27] M. Behnia, S. Parneix, Y. Shabany, and P. A. Durbin. Numerical Study of Tur- bulent Heat Transfer in Confined and Unconfined Impinging Jets. International Jounal of Heat and Fluid Flow, 20:1–9, 1999. [28] A. Bejan. Convection Heat Transfer. John Wiley and Sons, New York, 1984. [29] R. W. Bilger and R. E. Beck. In 15th Symp. (Int’l.) on Combustion, page 541. The Combustion Institute, 1975. [30] R. W. Bilger, M. B. Esler, and S. H. Starner. On Reduced Mechanisms for Methane- Air Combustion. In Lecture Notes in Physics, volume 384, page 86. Springer-Verlag, 1991. [31] B. Binniger, M. Chan, G. Paczkko, and M. Herrmann. Numerical Simulation of Turbulent Partially Premixed Hydrogen Flames with the Flamelet Model. Techni- cal report, Advanced Combustion Gmbh, Internal Report, 1998. [32] J. Blauvens, B. Smets, and J. Peters. In 16th Symp. (Int’l.) on Combustion. The Combustion Institute, 1977. [33] R. M. Bowen. Theory of Mixtures. In A. C. Eringen, editor, Continuum Physics, pages 1–127. Academic Press, New York, 1976. [34] C. T. Bowman. Chemistry of Gaseous Pollutant Formation and Destruction. In W. Bartok and A. F. Sarofim, editors, Fossil Fuel Combustion. J. Wiley and Sons, Canada, 1991. [35] R. K. Boyd and J. H. Kent. Three-dimensional furnace computer modeling. In 21st Symp. (Int’l.) on Combustion, pages 265–274. The Combustion Institute, 1986. [36] J. U. Brackbill, D. B. Kothe, and C. Zemach. A Continuum Method for Modeling Surface Tension. J. Comput. Phys., 100:335–354, 1992. [37] A. Brandt. Multi-level Adaptive Computations in Fluid Dynamics. Technical Report AIAA-79-1455, AIAA, Williamsburg, VA, 1979. [38] K. N. Bray and N. Peters. Laminar Flamelets in Turbulent Flames. In P. A. Libby and F. A. Williams, editors, Turbulent Reacting Flows, pages 63–114. Academic Press, 1994. [39] K. S. Brentner and F. Farassat. An Analytical Comparison of the Acoustic Analogy and KirchhoffFormulations for Moving Surfaces. AIAA Journal, 36(8), 1998. [40] J. Brouwer, M. P. Heap, D. W. Pershing, and P. J. Smith. A Model for Prediction of Selective Non-Catalytic Reduction of Nitrogen Oxides by Ammonia, Urea, and Cyanuric Acid with Mixing Limitations in the Presence of CO. In 26th Symposium (Int’l) on Combustion, The Combustion Institute, 1996. c ⃝Fluent Inc. January 11, 2005 Bib-3 BIBLIOGRAPHY [41] S. Brunauer. The Absorption of Gases and Vapors. Princeton University Press, Princeton, NJ, 1943. [42] Trong T. Bui. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows. Technical Memorandum NASA/TM-1999-206570, 1999. [43] M. Sommerfeld C. Mundo and C. Tropea. Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process. International Journal of Multi- phase Flow, 21(2):151–173, 1995. [44] R. Cao and S. B. Pope. Numerical Integration of Stochastic Differential Equations: Weak Second-Order Mid-Point Scheme for Application in the Composition PDF Method. Journal of Computational Physics, 185(1):194–212, 2003. [45] N. F. Carnahan and K. E. Starling. Equations of State for Non-Attracting Rigid Spheres. J. Chem. Phys., 51:635–636, 1969. [46] M. G. Carvalho, T. Farias, and P. Fontes. Predicting Radiative Heat Transfer in Absorbing, Emitting, and Scattering Media Using the Discrete Transfer Method. In W.A. Fiveland et al., editor, Fundamentals of Radiation Heat Transfer, volume 160, pages 17–26. ASME HTD, 1991. [47] J. R. Cash and A. H. Karp. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathemat- ical Software, 16:201–222, 1990. [48] T. Cebeci and P. Bradshaw. Momentum Transfer in Boundary Layers. Hemisphere Publishing Corporation, New York, 1977. [49] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, England, 3rd edition, 1990. [50] S. Charpenay, M. A. Serio, and P. R. Solomon. In 24th Symp. (Int’l.) on Combus- tion, pages 1189–1197. The Combustion Institute, 1992. [51] H. C. Chen and V. C. Patel. Near-Wall Turbulence Models for Complex Flows Including Separation. AIAA Journal, 26(6):641–648, 1988. [52] P. Cheng. Two-Dimensional Radiating Gas Flow by a Moment Method. AIAA Journal, 2:1662–1664, 1964. [53] N. P. Cheremisinoff. Fluid Flow Pocket Handbook. Gulf Publishing Co., Houston, TX., 1984. [54] D. Choudhury. Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107, 1993. Bib-4 c ⃝Fluent Inc. January 11, 2005 BIBLIOGRAPHY [55] E. H. Chui and G. D. Raithby. Computation of Radiant Heat Transfer on a Non- Orthogonal Mesh Using the Finite-Volume Method. Numerical Heat Transfer, Part B, 23:269–288, 1993. [56] Clift, Grace, and Weber. Bubbles, Drops, and Particles. Technical report, Academic Press, 1978. [57] P. J. Coelho and M. G. Carvalho. Modelling of Soot Formation and Oxidation in Turbulent Diffusion Flames. J. of Thermophysics and Heat Transfer, 9(4):644–652, 1995. [58] M. F. Cohen and D. P. Greenberg. The Hemi-Cube: A Radiosity Solution for Complex Environments. Computer Graphics, 19(3):31–40, 1985. [59] D. Cokljat, V. A. Ivanov, F. J. Sarasola, and S. A. Vasquez. Multiphase k-epsilon Models for Unstructured Meshes. In ASME 2000 Fluids Engineering Division Sum- mer Meeting, Boston, USA, 2000. [60] A. Coppalle and P. Vervisch. The Total Emissivities of High-Temperature Flames. Combust. Flame, 49:101–108, 1983. [61] S. M. Correa. A Review of NOx Formation Under Gas-Turbine Combustion Con- ditions. Combustion Science and Technology, 87:329–362, 1992. [62] C. uploads/Geographie/ bibliography - 2023-03-27T030815.525.pdf

  • 24
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager