THESE Presentée pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE STRASBOURG

THESE Presentée pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE STRASBOURG Discipline: Sciences de la Terre et de l’Environnement par Gabriela TAPIA PADILLA MODELISATION ET OPTIMISATION DES PROCESSUS DE DEPOLLUTION BIOLOGIQUE DES MATRICES POREUSES CONTAMINEES PAR DES PESTICIDES: VERS UNE NOUVELLE FONCTIONNALITE DES BASSINS D’ORAGE Soutenue publiquement le 17 décémbre 2010 devant la commission d’examen: GREGOIRE Caroline IDAE à l’Ecole Nationale de Génie de l’Eau et de l’Environnement de Strasbourg/ Laboratoire d’Hydrologie et de Géochimie de Strasbourg Directrice de thèse MOSE Robert Professeur à l’Institut de Mécanique des Fluides et des Solides de Strasbourg Codirecteur de thèse MARTINEZ Luis Professeur à l’Université Henri Poincaré Nancy I Rapporteur externe CAPRI Ettore Professeur à l’Université Catholique du Sacre Cœur, Piacenza Italie Rapporteur externe LEHMANN François Maître de conférences à l’Université de Strasbourg (Laboratoire d’Hydrologie et de Géochimie de Strasbourg) Rapporteur interne TOURNEBIZE Julien Chercheur au Cemagref Antony (UR HBAN) Examinateur WANKO NGNIEN Adrien Maître de conférences à l’Institut de Mécanique des Fluides et des Solides de Strasbourg Membre invité ii ACKNOWLEDGEMENTS I would like to thank all the people who contributed in some way to the work described in this thesis. First I would like to thank to my supervisors, Dr. Caroline GREGOIRE and Dr. Robert MOSE, for accepting me into their research groups: the Hydrology and Geochemistry Laboratory of Strasbourg (LHYGES) and the Urban Hydraulics research team (HU/IMFS), based at the National School for Water and Environment Engineering in Strasbourg, France (ENGEES). In particular, I would like to extend my sincere and deep gratitude to Dr. Adrien Wanko, for his guidance and support throughout the course of my study. Without his continued support and interest, this thesis would not have been the same as presented here. I am also grateful to Dr. Luis MARTINEZ, Dr. Ettore CAPRI, Dr. François LEHMANN, and Dr. Julien TOURNEBIZE for being part of the examining committee and thesis jury. My sincere appreciation also extends to Dr. Antoine-Georges SADOWSKI, Dr. José VAZQUEZ and all the members of the HU group for contributing to a convivial atmosphere at work and providing their assistance at various occasions. Special thanks to my several office-mates through all these years for their company and the coffe breaks: Fabien, Renaud, Georges, Rabih, Matthieu, Nicolas, Jonathan, Damien, Alain, and Noëlle. A fellowship from the Region d’Alsace is gratefully acknowledged, as well as the funding from the European Commision under the frame of the European LIFE ENVIRONMENT project ARTWET (LIFE 06 ENV/F/000133). I should give a special mention to my friends for their help and encouragement. I am thankful to the Association Anahuacalli, especially to the dance group members, whose help and humor allowed me to get through this project. Finally, my deeplest gratitude is to my family for their unconditional love and support. . iii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................................................ vii LIST OF TABLES ............................................................................................................................................... ix LIST OF ABBREVIATIONS AND DEFINITIONS ............................................................................................x Chapter 1 – Introduction......................................................................................................... 1 SECTION 1.1. INTRODUCTION: VERSION FRANÇAISE................................................................... 1 SECTION 1.2. INTRODUCTION: ENGLISH VERSION...................................................................... 6 SECTION 1.3. REFERENCES FIRST CHAPTER ............................................................................. 10 Chapter 2 - State of the art.................................................................................................... 11 SECTION 2.1. PESTICIDES, ENVIRONMENT AND HUMAN HEALTH ............................................... 12 SECTION 2.2. EUROPEAN PESTICIDE LEGISLATION .................................................................. 14 SECTION 2.3. PESTICIDE RISK REDUCTION.............................................................................. 15 2.3.1. Management approach ........................................................................................... 15 2.3.2. Remediation techniques ......................................................................................... 16 SECTION 2.4. WETLANDS TREATMENT HISTORY ........................................................................ 21 SECTION 2.5. CONSTRUCTED WETLANDS AND PESTICIDES ........................................................ 24 2.5.1. Design parameters.................................................................................................. 27 2.5.1.1. Hydrologic analysis......................................................................................... 27 2.5.1.2. Chemical Half-life........................................................................................... 28 2.5.1.3. Hydraulic retention time ................................................................................. 28 SECTION 2.6. PROCESSES ....................................................................................................... 28 2.6.1. Hydrodynamics ...................................................................................................... 29 2.6.2. Transport ................................................................................................................ 29 2.6.3. Pesticides fate in the environment.......................................................................... 30 2.6.3.1. Sorption........................................................................................................... 30 2.6.3.2. Runoff .............................................................................................................. 32 2.6.3.3. Leaching.......................................................................................................... 32 2.6.3.4. Volatilization................................................................................................... 33 2.6.3.5. Wind transfer................................................................................................... 33 2.6.3.6. Soil erosion...................................................................................................... 34 2.6.3.7. Chemical degradation..................................................................................... 34 2.6.3.8. Phytodegradation............................................................................................ 35 2.6.3.9. Microbial degradation .................................................................................... 35 2.6.3.10. Photodegradation.......................................................................................... 35 SECTION 2.7. PESTICIDE DYNAMICS MODELLING...................................................................... 36 SECTION 2.8. REFERENCES SECOND CHAPTER ......................................................................... 38 Chapter 3 – Model development........................................................................................... 54 SECTION 3.1. MIXED HYBRID FINITE ELEMENTS...................................................................... 55 SECTION 3.2. SPACE DISCRETIZATION AND BOUNDARY CONDITIONS.......................................... 57 SECTION 3.3. 2D HYDRODYNAMIC MODELLING....................................................................... 57 3.3.1. Variable transformation.......................................................................................... 58 3.3.2. Darcy flux approximation over an element............................................................ 59 3.3.3. Continuity of fluxes and pressure .......................................................................... 63 3.3.4. Boundary conditions .............................................................................................. 64 3.3.4.1. Dirichlet boundary conditions ........................................................................ 64 3.3.4.2. Neumann boundary conditions........................................................................ 64 3.3.4.3. Unit hydraulic gradient boundary condition .................................................. 64 3.3.5. Matrix form of the continuity of flux..................................................................... 65 3.3.6. Soil properties ........................................................................................................ 66 3.3.6.1. Hydraulic conductivity.................................................................................... 66 iv 3.3.6.2. Effective Saturation......................................................................................... 68 3.3.6.3. Water content .................................................................................................. 68 3.3.6.4. Total Porosity.................................................................................................. 68 3.3.6.5. Effective Porosity ............................................................................................ 69 3.3.6.6. Specific water capacity.................................................................................... 69 3.3.7. Mass conservation.................................................................................................. 70 3.3.8. Time discretization................................................................................................. 72 3.3.9. Linearization........................................................................................................... 73 3.3.10. Switching technique............................................................................................. 74 3.3.11. Average pressure calculation ............................................................................... 75 3.3.12. Matrix form of the average pressure .................................................................... 76 3.3.13. Hydrodynamics system of equations using standard MHFEM............................ 77 3.3.14. Mass condensation scheme (Mass lumping)........................................................ 78 3.3.15. Hydrodynamics system of equations using mass condensation scheme.............. 81 3.3.16. Top boundary conditions (Evaporation / Infiltration).......................................... 82 3.3.17. Mass balance error ............................................................................................... 84 3.3.18. Maximal convergence errors for pressure head and water content...................... 85 3.3.19. Discrepancy between average pressure and arithmetic mean of edge pressures . 85 3.3.20. Numerical solution and convergence criteria....................................................... 86 3.3.21. Hydrodynamics modelling outline....................................................................... 87 SECTION 3.4. 2D TRANSPORT MODELLING .............................................................................. 88 3.4.1. New approach to solve transport equation ............................................................. 88 3.4.2. Advective-dispersive flux ...................................................................................... 91 3.4.3. Continuity equation................................................................................................ 92 3.4.4. Boundary conditions .............................................................................................. 92 3.4.5. Matrix form of the continuity equation.................................................................. 93 3.4.6. Advection-diffusion equation................................................................................. 93 3.4.7. Time discretization................................................................................................. 94 3.4.8. Linear-sorption reaction......................................................................................... 94 3.4.9. Average concentration in the element.................................................................... 94 3.4.10. Matrix form of the average concentration............................................................ 95 3.4.11. Mixed hybrid formulation for the transport equation........................................... 96 3.4.12. Oscillation control for advection dominant problem- a new flux limiter ............ 96 3.4.13. Matrix form of the average concentration using the flux limiting tool................ 98 3.4.14. Matrix form of the continuity equation using the flux limiting tool.................... 98 3.4.15. Residence Time Distribution................................................................................ 99 3.4.16. Numerical solution and convergence criterion................................................... 100 3.4.17. Maximal convergence errors for concentration ................................................. 100 3.4.18. Transport modelling outline............................................................................... 101 SECTION 3.5. PESTICIDE DEGRADATION ............................................................................... 102 SECTION 3.6. TIME CONTROL ............................................................................................... 103 SECTION 3.7. MODELLING CODE, PRE- AND POST PROCESSING OF RESULTS............................ 107 SECTION 3.8. REFERENCES THIRD CHAPTER .......................................................................... 108 Chapter 4 – Verification of the model ................................................................................ 112 SECTION 4.1. INFILTRATION – COMPARISON WITH HYDRUS 1D........................................... 113 SECTION 4.2. TRANSPORT VERIFICATION: 1D TEST CASE - HYDRUS 1D ............................... 115 4.2.1. Flux Limiter Sensitivity Analysis ........................................................................ 117 SECTION 4.3. TRANSPORT VERIFICATION: 2D TEST CASE –ANALYTICAL SOLUTION .................. 118 SECTION 4.4. VARIABLE TRANSFORMATION 1D [PAN AND WIERENGA, 1995]........................ 121 4.4.1. Pressure head and water content distributions ..................................................... 122 v 4.4.2. Indicator parameters definition ............................................................................ 125 4.4.3. Indicator Parameters correlations......................................................................... 126 4.4.3.1. Correlations between time-indicator parameters ......................................... 127 4.4.3.2. Correlations between error-indicator parameters........................................ 127 4.4.3.3. Correlations between time-indicator and error-indicator parameters......... 127 4.4.4. Agglomerative Hierarchical Clustering (AHC) ................................................... 128 4.4.4.1. Advantages and disadvantages of AHC ........................................................ 128 4.4.4.2. Principle of AHC.......................................................................................... 128 4.4.5. AHC Variables definition..................................................................................... 129 4.4.5.1. Discrete variables ........................................................................................ 129 4.4.5.1. Continuous variables..................................................................................... 130 4.4.6. Summary statistics................................................................................................ 130 4.4.7. Clustering results.................................................................................................. 131 4.4.7.1. Re-grouping of discrete variables................................................................. 131 4.4.7.2. Re-grouping of continuous variables............................................................ 134 4.4.8. Selection of appropriate models........................................................................... 136 SECTION 4.5. STANDARD MHFEM FORMULATION ................................................................ 138 SECTION 4.6. INFILTRATION UNDER DIRICHLET CONDITION [CELIA ET AL., 1990].................. 139 SECTION 4.7. TOP BOUNDARY CONDITIONS [VAN DAM AND FEDDES, 2000]........................... 143 4.7.1. Ponded conditions: Infiltration under intensive rain at a dry soil. ....................... 144 4.7.2. High evaporation at a wet soil.............................................................................. 145 SECTION 4.8. REFERENCES FOURTH CHAPTER....................................................................... 147 Chapter 5 – Application of the model................................................................................. 148 SECTION 5.1. ADSORPTION DISTRIBUTION IMPACT ON PREFERENTIAL TRANSPORT WITHIN HORIZONTAL FLOW CONSTRUCTED WETLAND (HFCW)........................................................ 149 Abstract .......................................................................................................................... 149 5.1.1. Introduction.......................................................................................................... 150 5.1.2. Material and methods........................................................................................... 153 5.1.2.1. 2D Hydrodynamic modelling ........................................................................ 155 5.1.2.2. 2D Transport modelling (a new approach)................................................... 156 5.1.2.2. Numerical Solution........................................................................................ 158 5.1.2.4. Numerical experiences .................................................................................. 159 5.1.2.5. Time moments analysis.................................................................................. 161 5.1.3. Results and discussions........................................................................................ 162 5.1.3.1. Hydrodynamic verification : The perched water table problem................... 162 5.1.3.2. The steady state condition within the HFCW................................................ 163 5.1.3.3. Preferentiel pathway within homogeneous texture ....................................... 166 5.1.4. Conclusion............................................................................................................ 176 5.1.5. References Section 5.1......................................................................................... 178 SECTION 5.2. A NEW EMPIRICAL LAW TO ACCURATELY PREDICT SOLUTE RETENTION CAPACITY WITHIN HORIZONTAL FLOW CONSTRUCTED WETLANDS (HFCW)............................................. 180 Abstract .......................................................................................................................... 180 5.2.1. Introduction.......................................................................................................... 180 5.2.2. Material and methods........................................................................................... 182 5.2.2.1. Description of the study area ........................................................................ 182 5.2.2.2. The governing equations............................................................................... 183 5.2.3. Results and discussion.......................................................................................... 184 5.2.3.1. The steady state condition within the HFCW................................................ 184 5.2.3.2. Choosing a suitable operation conditions for the HFCW............................. 187 vi 5.2.3.3. Improving solute storage capacities within HFCWs – the adsorption layer location....................................................................................................................... 189 5.2.3.4. A Law for solute retention capacity .............................................................. 190 5.2.3.5. Empirical law verification and validation .................................................... 194 5.2.4. Conclusion............................................................................................................ 197 5.2.5. References Section 5.2......................................................................................... 198 Chapter 6 – Conclusions and perspectives......................................................................... 200 APPENDIX I. REFERENCE TRANSFORMATION ......................................................................... 204 1. Transformation from an element of reference to an element in the physical space... 204 2. Transformation from an element in the physical space to an element of reference... uploads/Geographie/ tapia-padilla-gabriela-2010r-pdf.pdf

  • 12
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager