Protection et surveillance des réseaux de transport d'énergie électrique - Volu

Protection et surveillance des réseaux de transport d'énergie électrique - Volume 1 TROISIEME PARTIE (en cliquant ci-dessus, tu retournes à la table des matières générale) PROTECTION CONTRE LES COURTS-CIRCUITS 1 - Protection contre les courts-circuits des réseaux en antenne - notion de sélectivité - protection à maximum d'intensité - protection Buchholz - protection masse - cuve - protection d'antenne passive - protection masse - câble - protection des batteries de condensateurs - protection contre la ferrorésonance - protection contre les flux trop élevés - fonctionnement de l'ensemble 2 - Protection contre les courts-circuits des réseaux bouclés - protection de distance . principe . protection électromécanique . protection statique . protection numérique . téléprotection - protection à comparaison de phase - protection différentielle . de ligne . de canalisation souterraine . de liaison courte . de barres - protection homopolaire 57 / 320 Protection et surveillance des réseaux de transport d'énergie électrique - Volume 1 58 / 320 Protection et surveillance des réseaux de transport d'énergie électrique - Volume 1 1 - PROTECTION CONTRE LES COURTS-CIRCUITS DES RESEAUX EN ANTENNE 1 - 1 - NOTION DE SELECTIVITE Considérons un cas simple : celui d'un réseau alimentant une charge passive à travers un transformateur. De plus nous supposerons que les défauts affectent simultanément les trois phases et ne sont pas résistants. Le réseau peut alors être représenté par ses grandeurs directes (voir la théorie des composantes symétriques, en annexe 1 ) P2 Poste A Poste B Poste C X P3 Zs = 2,5  Zl = 10  Zdt = 37  (16%) X P4  X X X P5 Icc = 20 kA U = 90 kV X P = 36 MVA P6 X Zs est l'impédance directe de source , c'est à dire l'impédance directe du réseau qui alimente le poste A IccA est le courant de court-circuit au poste A, lié à Zs par : IccA = 90 kV / 3 * Zs ZL est l'impédance directe de la ligne. Elle est de l'ordre de 0,4  par km , mais doit être mesurée, ou à défaut calculée, pour chaque ouvrage [annexe 3]. Zcc est l'impédance de court-circuit du transformateur . Elle est souvent donnée en pourcentage de l'impédance nominale Zn. Zn = U² / P = (90 kV)² / 36 = 225  Zcc = 16 % de Zn = 37  Le courant maximal circulant dans la ligne AB est de 230 A .C'est celui qui permet de fournir les 36 MVA au transformateur. Au poste A, une protection à maximum d'intensité P1 a été placée sur chacune des phases , au départ de la ligne AB. De même, au poste C, une protection à maximum d'intensité a été placée sur chacun des départs 20 kV: P2,P3,P4,P5,P6. Dans chacun d'eux circule une intensité maximale de 207 A . Lorsque un défaut apparaît sur un élément de ce réseau , le rôle de chaque relais de protection est d'abord de commander, s'il y a lieu, l'ouverture du disjoncteur situé sur le même départ, de telle sorte que l'ouvrage où se trouve le défaut, et lui seul, soit mis hors tension. On dit alors que le défaut est éliminé .Si un relais de protection, ou un disjoncteur , ne fonctionne pas , d'autres protections doivent faire ouvrir d'autres disjoncteurs, de telle manière que le défaut soit quand même éliminé. D'où deux types de déclenchement : 59 / 320 Protection et surveillance des réseaux de transport d'énergie électrique - Volume 1 a - déclenchement instantané , c'est à dire dans le cas où tout fonctionne correctement. Le seuil de courant de la protection P1 doit être réglé de telle manière que tous les défauts situés sur la ligne AB soient éliminés, mais qu'aucun de ceux situés sur les lignes 20 kV ne provoque son fonctionnement. Un court-circuit en B provoque la circulation en A d'un courant de: Icc1 = 90 000 / 3 * (2,5 + 10) = 4 150 A Un court-circuit au départ d'une des lignes 20 kV crée un courant donné par : Icc2 = 90 000 / 3 * (2,5 + 10 + 37) = 1 050 A Pour que le relais situé en P1 émette un ordre de déclenchement correct , il faut que le seuil de courant soit situé entre 1050 A et 4150 A . Nous prendrons par exemple 2600 A . Le seuil de courant de la protection P2 est réglé à 300 A , c'est à dire légèrement au dessus du courant maximal de la ligne . Il en est de même pour les protections des autres départs 20 KV . b - déclenchement temporisé, c'est à dire en secours. Supposons qu'un défaut apparaisse sur une ligne 20 kV, L2 par exemple , et que le disjoncteur correspondant ne s'ouvre pas . Dans ce cas , c'est la protection P1 qui devra commander l'ouverture de son disjoncteur , mettant ainsi hors tension la ligne 90 KV et les lignes 20 kV. Mais pour cela il faudra avoir la certitude que le disjoncteur de L2 devait s'ouvrir , et qu'il ne l'a pas fait . D'où deux réglages : - Réglage de seuil : Is > 300 * (20 / 90) = 66 A, afin qu'il ne soit pas plus sensible que P2 , Is > 230 A, afin qu'il soit insensible au courant de transit normal . Nous prendrons 300 A - Réglage de temporisation . Il faut attendre que : . P2 ait eu le temps d'émettre son ordre de déclenchement , (temps maximal ) . son disjoncteur ait eu le temps de couper le courant de court-circuit , (temps maximal ) . P1 ait eu le temps de s'apercevoir que le courant était coupé , et d'arrêter la temporisation , . un temps de sécurité C'est la somme de ces quatre temps , diminuée du temps minimal au bout duquel P1 met en route sa temporisation , qui donne la valeur de réglage de la temporisation . Pour des protections et des disjoncteurs modernes ils sont de l'ordre de : . déclenchement de P2 = 40 ms . ouverture du disjoncteur = 50 ms . retombée de P1 = 45 ms . temps de sécurité = 35 ms . mise en route de P1 = 20 ms Nous prendrons donc 40 + 50 + 45 + 35 - 20 = 150 ms. Cette notion de sélectivité, obtenue en combinant d'une part des réglages de grandeurs électriques, et d'autre part des réglages de temporisations, se retrouve dans tous les systèmes de protection. 60 / 320 Protection et surveillance des réseaux de transport d'énergie électrique - Volume 1 Nota: Dans le réseau décrit ci-dessus, pourtant simple, le système de protection est nettement insuffisant: il manque une protection pour le transformateur et pour le jeu de barres 20 kV, et le défaut entre une phase et la terre n'est pas traité. D'autre part, les fourchettes de réglage sont très larges. En fait, dans bien des cas elles peuvent être beaucoup plus étroites. On pourra par exemple le constater en installant trois transformateurs au lieu d'un seul , chaque ligne 20 KV transportant une charge triple. Enfin , dans ce réseau , tout défaut sur la ligne 90 KV, ou sur le transformateur, ou sur les barres 20 kV, provoque la coupure de tous les clients alimentés par les lignes 20 kV. Un tel inconvénient, s'il peut être admis pour les tensions de cet ordre, doit être évité pour les tensions plus élevées, et pour cela le réseau doit être interconnecté. Il devient alors, comme nous le verrons plus loin, beaucoup plus difficile à protéger . Bibliographie [21], [22], [23], [88], [91], [92] 61 / 320 Protection et surveillance des réseaux de transport d'énergie électrique - Volume 1 1- 2 - PROTECTION A MAXIMUM D'INTENSITE Cette dénomination regroupe les fonctions suivantes: - Relais instantané: lorsqu'un seuil de courant est dépassé , le relais émet aussi rapidement que possible un ordre de déclenchement . - Relais temporisé: lorsqu'un seuil de courant est dépassé , une temporisation est mise en route . Si à l'échéance de cette temporisation le seuil est toujours dépassé , le relais émet un ordre de déclenchement . - Relais à temps inverse: le déclenchement est émis au bout d'un temps inversement proportionnel à la valeur du courant . - Relais directionnel: c'est une fonction supplémentaire , que l'on ajoute à l'une ou l'autre des précédentes: l'ordre de déclenchement n'est émis que si la puissance transite dans un sens donné. Pour élaborer cette fonction le relais doit être alimenté aussi en tension, car le sens de transit est donné par le déphasage entre la tension et le courant. Les relais de protection utilisés sur les réseaux sont généralement des combinaisons de ces fonctions. Par exemple un relais est mis en route par le dépassement d'un seuil de courant, puis attend un temps fixe , puis , à échéance de ce temps attend un temps inversement proportionnel au courant, puis émet un uploads/Ingenierie_Lourd/ 1-protection-contre-les-courts-circuits-des-reseaux-en-antenne 1 .pdf

  • 22
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager