4 Théorie des échangeurs de chaleur 1. Description générale 1.1 Type d’échange
4 Théorie des échangeurs de chaleur 1. Description générale 1.1 Type d’échange Les échangeurs de chaleur : Sont des dispositifs qui assurent l'échange de chaleur entre deux fluides à des températures différentes sans qu'ils soient mélangés. Au sein d’un échangeur de chaleur on peut trouver les modes d’échange suivants : Conduction : c’est la propagation de la chaleur dans la matière, sans transfert de masse. À travers les solides, la conduction assure un bon transfert de chaleur. Convection : ce mode de transfert de chaleur apparaît entre deux phases dont l'une au moins est mobile, en présence d'une différence de température. Le mouvement des phases peut être provoqué par des différences de densité dans le fluide, le transfert de chaleur est dit de convection naturelle ou libre. Le mouvement peut être provoqué par une dégradation d'énergie mécanique, le transfert de chaleur est dit de convection forcée. Cette dernière est essentielle pour ces appareils (échangeurs). Rayonnement : c’est l’émission d’énergie par les surfaces des corps sous forme de radiation. Elle correspond à un échange de chaleur par l'intermédiaires d'une onde de nature électromagnétique et qui ne nécessite aucun support matériel (cas du vide, certains gaz plus ou moins transparent et de certains solide). Donc, le transfert de chaleur qui a lieu au sein d’un échangeur fait intervenir le mode convectif dans chacun des deux fluides et le mode conductif à travers la paroi qui les séparent. Généralement, le rayonnement est faible et sera négligé. En général, Il existe trois classes d'échangeurs de chaleurs : 1. Échangeurs à transferts directs, 2. Échangeurs de stockage thermique, 3. Échangeurs à contacts directs. 5 2. Principe général Le principe est de faire circuler deux fluides à travers des conduits qui les mettent en contact thermique. Ces fluides sont mis en contact thermique à travers une paroi métallique ce qui favorise les échanges de chaleur. En général, le fluide chaud cède de la chaleur au fluide froid. Le principal problème consiste à définir une surface d’échange suffisante entre les deux fluides pour transférer la quantité de chaleur nécessaire dans une configuration donnée. La quantité de chaleur transférée ne dépend pas seulement de la surface d’échange entre les deux fluides mais aussi de nombreux autres paramètres. Les flux de chaleurs transférées dépendent aussi : - des températures d’entrée, - des caractéristiques thermiques des fluides (chaleurs spécifiques, conductivité thermique), - des coefficients d’échange par convection. 3. Configurations géométriques 3.1 Échangeurs tubulaires coaxiaux (simple) Un des fluides circule dans l’espace annulaire entre les deux tubes tandis que l’autre circule dans le tube central. Pour cette configuration, deux types de fonctionnements sont distingués : les deux fluides circulent dans le même sens ou en sens opposé. Le premier est un échangeur co-courant (ou courant- parallèle). Dans le deuxième cas, c’est un échangeur contre-courant. Ce type d’échangeur est souvent rencontré dans l’industrie frigorifique en particulier pour les condenseurs à eau ou dans les groupes de production d’eau glacée. Figure 1 : Échangeur tubulaire simple. [27] Fluide chaud (entrée) Fluide froid (entrée) Fluide froid (sortie) Fluide chaud (sortie) 6 C'est le plus simple échangeur que l'on puisse concevoir, mais il est difficile avec ce type d'échangeur d'obtenir des surfaces d'échange importantes sans aboutir à des appareils très encombrants. Pour cela on a besoin de trouver d'autres géométries d'échanges. 3.2 Échangeurs Tubes/Calandre (à faisceaux complexes) Dans ce type d’échangeurs, l’un des fluides circule dans le calandre autour de tubes qui le franchissent tandis que l’autre fluide circule à l’intérieur des tubes. Souvent, il est constitué d’un faisceau de tubes traversant un réservoir de manière longitudinale, appelé échangeur multitubulaire. La circulation du fluide à travers les tubes est forcée par l’emplacement des parois, de manière à ce qu’il effectue un ou plusieurs aller-retours. Figure 2 : Principe d’un échangeur de chaleur tubes/calandre. [11] Le principe est schématisé dans la figure 2. Ces échangeurs sont constitués soit d’un tube unique (serpentin), soit d’un faisceau de tubes branchés en parallèle enfermés dans une enveloppe appelée calandre. Calandre Sortie de calendre Chicanes Entrée de calandre Sortie des tubes Entrée des tubes Tubes 7 L'emplacement des chicanes dans la calandre augmente la turbulence et l’efficacité de l’échange. Généralement, le rôle des chicanes peut être résumé en deux points : 1. Augmenter la rigidité du faisceau, pour éviter des phénomènes de vibration, 2. Augmenter la vitesse du fluide. Le passage du fluide chaud dans les tubes métalliques (acier, cuivre, inox, etc.) minimise les pertes de chaleur. Figure 3 : Schématisation d’un échangeur de chaleur multitubulaire : réchauffeur d'Ethylène, démontage du côté tubes et côté calandre pour test de réépreuve. (CP/2K, Sonatrach de Skikda) Dans la figure 3, une schématisation réelle d'un échangeur multitubulaire de fabrication espagnole utilisé au sein de la zone industrielle de Skikda. Cet échangeur est un réchauffeur d'Ethylène (l'Ethylène est un gaz utilisé comme monomère dans la réaction de polymérisation). En outre, sur chaque équipement industriel on trouve une plaque d'identification. À partir de cette plaque on peut déduire ses caractéristiques tels que: - la nature du fluide coté tubes et coté calandre, - la pression de fonctionnement de chaque fluide, - la température de fonctionnement, - la pression d'épreuve hydrostatique, - le poids des tubes...etc. 8 Figure 4 : Plaque d'identification fixée sur le réchauffeur d'Ethylène présenté dans la figure 3. On distingue trois classes d’appareils : Les échangeurs à plaque tubulaire fixes : soudées sur la calandre, ils ne peuvent être utilisés que si la différence de température entre les fluides chaud et froid est suffisamment faible pour que la dilatation du faisceau soit acceptable. Les échangeurs à tête flottante : l’une des plaques tubulaires est fixe, la seconde plaque à un diamètre inférieur, porte la boite de retour et peut coulisser librement de l’intérieur du capot qui ferme la calandre. Ces appareils permettent l’expansion thermique du faisceau ainsi que son nettoyage mécanique, constituent presque la totalité des échangeurs utilisées en raffinerie de la zone industrielle de Skikda. Les échangeurs à tubes en U : la plaque tubulaire est supprimée avec l’utilisation de tubes coudés, tout en conservant les propriétés d’expansion de la tête flottante. L’économie 9 réalisée par le coût d’une plaque tubulaire est compensée par l’impossibilité de nettoyage mécanique de l’intérieur des tubes, ces faisceaux seront surtout utilisés dans les rebouilleurs à vapeurs. 3.2.1 Échangeur 1-2 Ce type est le plus simple échangeur à faisceau: le fluide qui circule dans la calandre effectue un seul passe tandis que le fluide côté tubes effectue 2 (ou 2n) passes. Pour l'échangeur présenté dans la figure (2) le fluide effectue une seule passe côté calandre et dans les tubes. Figure 5 : Principe d’un échangeur de chaleur 1-2. 3.2.2 Échangeur 2-4 Lorsque l'échangeur 1-2 ne permet pas d'obtenir une efficacité supérieure à 0.75, on essaie à se rapprocher plus de l'échangeur à contre-courant en effectuant 2 (ou plus) passes en calandre. L'échangeur 2-4 comporte une chicane longitudinale de sorte que le fluide en calandre effectue 2 passes. Le fluide dans le tube effectue 4 (ou 4n) passes. Entrée de calendre Sortie de calendre Entrée de tubes Sortie de tubes 10 Figure 6 : Principe d’un échangeur de chaleur 2-4. [30] 3.3 Échangeurs à courants croisés Dans ce type d’échangeurs, une circulation de l’un des fluides dans une série de tubes alors que l’autre circule perpendiculairement autour des tubes. Généralement, c’est le liquide qui circule dans les tubes et le gaz à l’entour. Les tubes munis d’ailettes permettent un bon transfert de chaleur échangée en augmentant la surface d’échange. Le radiateur de refroidissement des véhicules à moteur est un exemple de cet échangeur. Figure 7: Échangeurs à courants croisés, fluides non mixés. [9, 11] x Sortie de calendre Sortie de tubes Entrée de tubes Entrée de calendre écoulement du gaz y 11 Figures 8 : Échangeur à courants croisés, un seul fluide mixé. [11] 3. 4 Échangeurs à plaques Ce type d’échangeurs est constitué de plaques assemblées de façon que le fluide puisse circuler entre elles. Un jeu de joints assure la distribution des fluides entre les plaques de telle sorte que chacun des deux fluides soit envoyé alternativement entre deux espaces inter plaques successifs. Un échange thermique des fluides s’effectue à travers les plaques. La compacité avantage ce type d’échangeur. Ce dispositif permet une grande surface d’échange dans un volume limité. Donc, son utilité apparait clairement lors des grandes puissances. Figure 9 : Exemple des différentes parties d’un échangeur à plaque. (CP/2K, Sonatrach de Skikda) écoulement dans les tubes uploads/Finance/ cour-1.pdf
Documents similaires








-
36
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Jui 11, 2021
- Catégorie Business / Finance
- Langue French
- Taille du fichier 0.6974MB