Université Hassiba Benbouali, Chlef Faculté de Technologie Département de Génie
Université Hassiba Benbouali, Chlef Faculté de Technologie Département de Génie Mécanique Domaine : Sciences et Techniques Filière : Génie mécanique 3ème Année Licence Génie Mécanique Energétique Polycopié de la matière : MECANIQUE DES FLUIDES II Cours & Exercices corrigés Fait par : Docteur M’hamed BERIACHE Maître de Conférences « A » 2019 Avant-propos Le présent polycopié est dédié au programme de la mécanique des fluides II destinée aux étudiants de 3ème année licence relevant du domaine sciences et techniques. Il couvre plusieurs spécialités, particulièrement le génie mécanique, l’hydraulique et génie civil, l’aéronautique, le génie maritime, le génie climatique et plusieurs d’autres. Son contenu consiste en trois chapitres traitant la cinématique des fluides, la théorie de la couche limite et l’analyse dimensionnelle et similitude. Ce polycopié est conforme aux programmes ministériels de la mécanique des fluides II enseignés pour les étudiants de 3ème année licence génie mécanique énergétique. Chaque chapitre du polycopié est développé en cours détaillé couvrant tous les éléments du canevas de formation ministériel suivit d’un nombre d’exercices bien sélectionnés et corrigés. Les cours ainsi que les exercices sélectionnés et améliorés sont tirés des grands ouvrages de références, cités en bibliographie, portent sur des applications diverses de la mécanique des fluides en relation directe avec les cours enseignés. La rédaction de ce polycopié est le fruit de lecture de nombreux ouvrages classiques et quelques documents électroniques, tous disponibles à la bibliothèque ainsi que sur le net. J’espère que ce polycopié constituera un support utile pour nos étudiants ainsi que nos collègues enseignants. Les critiques, les suggestions et les avis des collègues, des étudiants et des intéressés par ce cours me seront précieux pour l’amélioration de la qualité de notre enseignement. M’hamed BERIACHE Chlef, le 17 janvier 2019 a Table des matières Chapitre 1 : Cinématique des fluides 1.1. Introduction …………………………………………………………………… 01 1.2. Rappels mathématiques ……………………………………………………… 01 1.2.1. Champs scalaires et vectoriels ………………………………………………… 01 1.2.1.1. Scalaire ………………………………………………………………………… 01 1.2.1.2. Champ scalaire ………………………………………………………………… 01 1.2.1.3. Vecteur ………………………………………………………………………… 01 1.2.1.4. Champ de vecteur …………………………………………………………….. 01 1.2.2. Champ d’écoulement ………………………………………………………….. 02 1.2.3. Les opérateurs mathématiques ………………………………………………… 02 1.2.3.1. L’opérateur Nabla ……………………………………………………………... 02 1.2.3.2. Le gradient …………………………………………………………………….. 02 1.2.3.3. Le divergent …………………………………………………………………… 03 1.2.3.4. Le rotationnel ………………………………………………………………….. 03 1.2.3.5. Le Laplacien …………………………………………………………………… 03 1.3. Description de mouvement du fluide ………………………………………….. 04 1.3.1. Approche Lagrangienne ……………………………………………………….. 05 1.3.2. Approche Eulérienne …………………………………………………………... 06 1.4. Champ de vitesse et champ d’accélération ……………………………………. 07 1.5. Equations de Navier-Stokes …………………………………………………… 09 1.6. Equation d’Euler ………………………………………………………………. 09 1.7. Equation de Bernoulli …………………………………………………………. 10 1.8. Equation de continuité (forme différentielle) ………………………………….. 11 1.9. Notions de lignes de courant, trajectoire, tube de courant et surface de courant 12 1.9.1. Ligne de courant (ligne d’écoulement) ………………………………………... 12 1.9.2. La trajectoire …………………………………………………………………... 14 1.9.3. Le tube de courant …………………………………………………………….. 14 1.9.4. La surface de courant ………………………………………………………….. 14 1.10. La fonction de courant et fonction potentiel de vitesse ……………………….. 15 1.10.1. La fonction de courant ………………………………………………………… 15 1.10.2. La fonction de potentiel ou fonction potentiel de vitesse …………………….. 16 1.11. Equations de Cauchy-Riemann ………………………………………………... 17 1.12. Ecoulements plans ……………………………………………………………... 17 1.12.1. Ecoulements simples …………………………………………………………... 17 1.12.1.1. Ecoulement uniforme rectiligne ………………………………………………... 17 1.12.1.2. Ecoulement autour d’une source ou autour d’un puit ………………………….. 18 1.12.1.3. Ecoulement avec circulation (à vortex) ………………………………………… 21 1.12.2. Ecoulements superposés ………………………………………………………... 24 1.13. Eléments de la théorie potentiel complexe ……………………………………... 24 1.13.1. Définition et contexte …………………………………………………………... 25 b 1.13.2. Vitesse complexe ……………………………………………………………….. 25 1.13.3. Ecoulements potentiels élémentaires exprimés sous forme complexe …………. 26 1.13.3.1. Ecoulement uniforme rectiligne ………………………………………………... 26 1.13.3.2. Écoulement plan autour d'une source ou autour d'un puits …………………….. 27 1.13.3.3. Ecoulement à Vortex (tourbillon libre) …………………………………………. 30 1.14. Utilisation des transformations conformes ……………………………………... 31 Exercices corrigés …………………………………………………………………………... 32 Chapitre 2 : Théorie de la couche limite 2.1. Introduction ……………………………………………………………………... 51 2.2. Définitions et caractéristiques de la couche limite ……………………………... 51 2.2.1. Epaisseur de la couche limite …………………………………………………… 53 2.2.2. Epaisseur conventionnelle de la couche limite …………………………………. 53 2.2.3. Epaisseur de déplacement de la couche limite …………………………………. 53 2.2.4. Epaisseur de quantité de mouvement de la couche limite ……………………… 55 2.3. Equations de la couche limite …………………………………………………... 56 2.3.1. Solution de Blasius de la couche limite sur une plaque plane ………………….. 57 2.3.2. Equation intégrale de Von-Karman …………………………………………….. 59 2.3.2.1. Profil de vitesse linéaire ………………………………………………………… 62 2.3.2.2. Profil de vitesse parabolique ……………………………………………………. 64 2.4. Transition vers la turbulence …………………………………………………… 65 2.5. La couche limite turbulente sur une plaque plane (sans gradient de pression) … 65 Exercices corrigés ………………………………………………………………………….. 68 Chapitre 3 : Analyse dimensionnelle et similitude 3.1. Analyse dimensionnelle ………………………………………………………... 77 3.2. Dimensions, unités et système international …………………………………… 77 3.3. Les dimensions de référence …………………………………………………… 78 3.4. Systèmes d’unités ………………………………………………………………. 79 3.4.1. 3.4.1. Système gravitationnel britannique BG…………………………………… 79 3.4.2. Système international SI ………………………………………………………... 79 3.4.3. Système anglais d'ingénierie (EE) ……………………………………………… 80 3.5. Théorème de Vachy-Buckingham ……………………………………………… 81 3.6. Les étapes de l’analyse dimensionnelle ………………………………………… 81 3.7. La sélection des variables ………………………………………………………. 82 3.8. Exemple d’analyse dimensionnelle dans la mécanique des fluides …………….. 83 3.9. Quelques groupes adimensionnels communs en mécanique des fluides ……….. 85 3.10. Similitude et modèles …………………………………………………………... 86 3.10.1. Définitions ……………………………………………………………………… 86 3.10.1.a. Le prototype …………………………………………………………………….. 86 3.10.1.b. La maquette …………………………………………………………………….. 86 c Références bibliographiques Annexe 3.11. Similitude géométrique …………………………………………………………. 87 3.12. Similitude cinématique …………………………………………………………. 87 3.13. Similitude dynamique …………………………………………………………... 88 3.13.1. Similitude de Froude ……………………………………………………………. 89 3.13.2. Similitude d’Euler ………………………………………………………………. 89 3.13.3. Similitude de Reynolds …………………………………………………………. 90 3.14. Variables réduites ………………………………………………………………. 90 Exercices corrigés ………………………………………………………………………….. 91 1 Chapitre 1 Cinématique des fluides Chapitre 1 Cinématique des Fluides 1.1. Introduction Dans la cinématique des fluides, nous allons nous intéresser aux mouvements des fluides par rapport au temps, indépendamment des causes qui les provoquent, c’est-à-dire sans prendre en compte les forces qui sont à leur source. Un milieu fluide étant en mouvement, comment l’observer, comment le décrire ? Pour commencer, on introduit la notion de « particule fluide ». A cette particule fluide, on attache des grandeurs cinématiques (position, vitesse, accélération) et des grandeurs thermodynamiques (masse volumique, température, pression, …etc.). Lors de l’écoulement d’un fluide, le mouvement peut s’effectuer dans tous les sens (en 3 dimensions) comme il peut être rotationnel ou irrotationnel. Dans la description du milieu fluide, la particule fluide est assimilée à un point au sens mathématique du terme (c’est-à-dire avec un diamètre nul). 1.2. Rappels mathématiques 1.2.1. Champs scalaires et vectoriels 1.2.1.1. Scalaire Le scalaire est une quantité qui peut être exprimée par un nombre unique représentant sa grandeur. Exemple : masse, pression, densité et température. 1.2.1.2. Champ scalaire Si à chaque point d'un domaine, une fonction scalaire a une valeur définie, le domaine est appelé un champ scalaire. Exemple : Distribution de pression, distribution de température dans une ailette. 1.2.1.3. Vecteur Le vecteur est une quantité, qui est spécifiée à la fois par la magnitude et la direction. Exemple : Force, Vitesse et Déplacement. 1.2.1.4. Champ de vecteur Si à chaque point d'un domaine, une fonction vectorielle a une valeur définie, le domaine est appelée un champ vectoriel. Exemple : champ de vitesse d'un fluide en écoulement. 2 Chapitre 1 Cinématique des fluides 1.2.2. Champ d'écoulement Le domaine dans lequel les paramètres d'écoulement, c'est-à-dire la vitesse, la pression, etc., sont définis à chaque point et à chaque instant est appelée un champ d'écoulement. Ainsi, un champ d'écoulement serait spécifié par les vitesses à différents points de la région à des moments différents. 1.2.3. Les opérateurs mathématiques 1.2.3.1. L’opérateur Nabla On simplifie les écritures en utilisant la notation dyadique qui introduit le vecteur symbolique nabla, noté ∇ ሬ ሬ⃗, dont les composantes formelles sont les opérateurs de dérivation partielle par rapport aux variables d’espace x, y, z. ∇ ሬ ሬ⃗= ⎣ ⎢ ⎢ ⎢ ⎡ డ డ௫ డ డ௬ డ డ௭ (1.1) La notation des différents opérateurs en fonction de Nabla est donnée dans le tableau ci-dessous. Opérateur Notation Gradient, ݃ݎܽ݀ ሬሬሬሬሬሬሬሬሬሬ⃗߮ ∇ ሬ ሬ⃗߮ Divergent, ݀݅ݒ߮ ሬ⃗ ∇ ሬ ሬ⃗߮ ሬ⃗ Rotationnel, rot Laplacien, ∇ ሬ ሬ⃗ଶ߮ Laplacien vectoriel, ∇ ሬ ሬ⃗ଶ߮ ሬ⃗ 1.2.3.2. Le gradient En mathématiques, le gradient est un vecteur représentant la variation d'une fonction par rapport à la variation de ses différents paramètres, généralisant la notion de dérivée d'une fonction dans le cas de plusieurs variables. En physique et en analyse vectorielle, le gradient est une grandeur vectorielle indiquant la façon dont une grandeur physique varie dans l'espace. Il est courant, selon la façon de noter des vecteurs, d'écrire le gradient d'une fonction ainsi : grad ሬሬሬሬሬሬሬሬሬܸ⃗= ∇ ሬ ሬܸ⃗= ⎣ ⎢ ⎢ ⎢ ⎡ డ డ௫ డ డ௬ డ డ௭ (1.2) 3 Chapitre 1 Cinématique des fluides 1.2.3.3. Le divergent L'opérateur divergence est un outil d'analyse vectorielle qui mesure, pour faire simple, si un champ vectoriel « rentre » ou « sort » d'une zone de l'espace, comme ce que l’on peut observer sur un diagramme de lignes de champ. Il donne donc une information très liée aux sources qui créent le champ. Comme nous le préciserons, l'opérateur divergence est l'équivalent local de la mesure d'un flux. k z V j uploads/Ingenierie_Lourd/ pagedegarde.pdf
Documents similaires
-
18
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Nov 20, 2022
- Catégorie Heavy Engineering/...
- Langue French
- Taille du fichier 0.3794MB