Halogène groupe d'éléments chimiques de la colonne 17 du tableau périodique Cet
Halogène groupe d'éléments chimiques de la colonne 17 du tableau périodique Cet article ne cite pas suffisamment ses sources Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » En pratique : Quelles sources sont attendues ? Comment ajouter mes sources ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 H He 2 Li Be B C N O F Ne 3 Na Mg Al Si P S Cl Ar 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 6 Cs Ba * Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 7 Fr Ra * * Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og ↓ * La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb * * Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Li Métaux alcalins Be Métaux alcalino-terreux La Lanthanides Ac Actinides Sc Métaux de transition Al Métaux pauvres B Métalloïdes H Non-métaux F Halogènes He Gaz nobles Mt Nature chimique inconnue Les halogènes sont les éléments chimiques du 17e groupe (colonne) du tableau périodique, anciennement appelé groupe VIIA : ce sont le fluor 9F, le chlore 17Cl, le brome 35Br, l’iode 53I, l’astate 85At et le tennesse 117Ts. Ces deux derniers éléments étant très radioactifs, le tennesse étant même synthétique, seuls les quatre premiers sont bien caractérisés, et forment une famille d'éléments chimiques homonyme aux propriétés très homogènes : particulièrement électronégatifs, ils sont chimiquement très réactifs, leur réactivité décroissant lorsque leur numéro atomique augmente ; le fluor est ainsi le plus réactif d'entre eux, formant des composés avec tous les autres éléments chimiques connus hormis l'hélium et le néon. L 'astate appartient au groupe des halogènes mais non à la famille des halogènes, étant plutôt classé parmi les métalloïdes compte tenu de ses propriétés physiques davantage métalliques que celles de l'iode ; l'astate peut être vu comme appartenant à la fois à la famille des halogènes et à celle des métalloïdes. Quant au tennesse, il n'a été produit qu'à raison de quelques atomes à la durée de vie très brève — la période radioactive des isotopes 293Ts et 294Ts est de l'ordre de 22 ms et 51 ms respectivement — de sorte que ses propriétés physiques et chimiques macroscopiques sont inconnues : il n'est donc rangé dans aucune famille d'éléments. À 0 °C et à pression atmosphérique, les corps simples de cette famille sont formés de molécules diatomiques. Leur état standard est gazeux pour le difluor F2 et le dichlore Cl2, liquide pour le dibrome Br2, et solide pour le diiode I2. Ils ne se trouvent généralement pas dans la nature sous cette forme, bien que le difluor ait été identifié dans l'antozonite[1]. Dans la mesure où leur couche de valence contient sept électrons, ils forment facilement des anions, appelés halogénures : fluorure F–, chlorure Cl–, bromure Br– et iodure I–. À l'exception du fluorure d'hydrogène (acide fluorhydrique) HF, leurs composés avec l'hydrogène sont tous des acides forts : l'acide chlorhydrique (solution aqueuse du chlorure d'hydrogène HCl), notamment. Le mot « halogène » est issu du grec ἅλς (hals) signifiant « sel », et γεννάν (gennán) signifiant « engendrer ». Il a été introduit par Schweigger (en) en 1811 pour désigner le dichlore Cl2, qui était connu pour attaquer les métaux et donner des sels, et Berzelius en a étendu l'usage à l'ensemble de la famille en 1848. Compte tenu de leur très grande réactivité, les halogènes se présentent naturellement essentiellement sous forme de sels comprenant un anion halogénure, comme le fluorure de calcium CaF2, le chlorure de sodium NaCl (sel de table), le bromure d'argent AgBr et l'iodure de potassium KI. On peut cependant également les rencontrer dans des composés non ioniques, voire dans des molécules biologiques, comme l'iode dans les hormones thyroïdiennes, thyroxine et triiodothyronine. Apparence des halogènes Fluor liquide à −196 °C Chlore liquide en ampoule Brome en ampoule avec sa vapeur Cristaux d'iode Propriétés physiques À température ambiante et sous pression atmosphérique, tous les halogènes forment des molécules diatomiques ; le fluor est un gaz jaune, le chlore est un gaz vert pâle, le brome est un liquide rouge et l'iode est un solide violet. L 'astate, radioactif avec une demi-vie de quelques heures, n'est connu qu'en toutes petites quantités. Le tableau ci-dessous résume quelques propriétés physiques des halogènes. Ces dernières évoluent de manière continue le long de la 17e colonne du tableau périodique. Ainsi, leur polarisabilité croît avec le numéro atomique, ce qui accroît parallèlement les forces de London dans les corps simples. Leur température de fusion et leur température d'ébullition croissent donc de −220 °C et −188 °C pour le fluor jusqu'à 113,7 °C et 184,3 °C pour l'iode. À l'inverse, leur énergie d'ionisation et leur électronégativité décroissent de 1 681 et 3,98 kJ/mol pour le fluor à 1 008 et 2,66 kJ/mol pour l'iode. Corps purs Molécules d'halogène Les halogènes forment des molécules homonucléaires diatomiques X2 dont la géométrie peut être résumée de la façon suivante : Halogène Molécule Structure Représentation Longueur de la liaison X–X État gazeux État solide Fluor F2 143 pm 149 pm Chlore Cl2 199 pm 198 pm Brome Br2 228 pm 227 pm Iode I2 266 pm 272 pm L 'existence de la molécule de diastate At2 n'est pas formellement établie : les données relatives à son observations sont souvent discutées et ne permettent pas de conclure, certaines sources considérant que cette molécule n'existe pas ou n'a jamais été observée[3] tandis que d'autres laissent entendre qu'elle doit exister[4]. Réactivité chimique L 'énergie de liaison des halogènes décroît de haut en bas de la 17e colonne du tableau périodique, avec une exception pour la molécule de difluor F2, ce qui signifie que la réactivité chimique de ces éléments décroît lorsque leur numéro atomique croît, car la taille de leurs atomes croît également. Le fluor suit cette tendance dans ses liaisons avec d'autres éléments, tandis que la molécule F2 présente au contraire une énergie de liaison relativement faible. Élément Masse atomique Température de fusion Température d'ébullition Masse volumique Rayon de covalence Configura électroniq Fluor 18,998 403 16 u −219,67 °C −188,11 °C 1,696 g/l 64 pm [He] 2s2 2p Chlore 35,451 5 u −101,5 °C −34,04 °C 3,2 g/l 102 ± 4 pm [Ne] 3s2 3p Brome 79,904(3) u −7,2 °C 58,8 °C 3,102 8 g/cm3 120 ± 3 pm [Ar] 4s2 3d Iode 126,904 47 u 113,7 °C 184,3 °C 4,933 g/cm3 139 ± 3 pm [Kr] 5s2 4d Énergies de liaison (kJ/mol) X X2 HX BX3 AlX3 CX4 F 159 574 645 582 456 Cl 243 428 444 427 327 Br 193 363 368 360 272 I 151 294 272 285 239 La réactivité chimique des halogènes les rend dangereux voire létaux pour les êtres vivants lorsqu'ils sont présents en quantité importante. Cette réactivité élevée est une conséquence de leur électronégativité élevée, qui provient de leur charge nucléaire effective (en) élevée. Le fluor est l'un des éléments chimiques les plus réactifs, susceptible de former des composés avec un grand nombre de substances généralement inertes, ainsi qu'avec tous les autres éléments chimiques connus, y compris les gaz nobles, à l'exception de l'hélium et du néon. Il se présente sous la forme d'un gaz corrosif et très toxique. Sa réactivité est telle qu'il attaque le verre en présence de la moindre trace d'humidité pour former du tétrafluorure de silicium SiF4. C'est la raison pour laquelle le fluor doit être manipulé à l'aide d'instruments en verre en l'absence totale d'humidité, en polytétrafluoroéthylène (PTFE) ou en métaux tels que le cuivre et l'acier, lesquels forment une couche de passivation en fluorure à leur surface. La forte réactivité du fluor conduit paradoxalement aux plus fortes liaisons chimiques, particulièrement avec le carbone. Le PTFE est ainsi un polymère à haut point de fusion particulièrement stable chimiquement et thermiquement. Réactions chimiques Avec l’hydrogène Tous les halogènes réagissent (spontanément à température ordinaire, sauf l'iode) avec l'hydrogène pour donner un gaz incolore de composition HX. Ces gaz sont solubles dans l'eau en donnant des acides halogénohydriques (H+,X−), tous des acides forts sauf HF (dissocié seulement partiellement)[5]. Avec les métaux Les halogènes réagissent à température ambiante (et en brûlant à chaud) avec presque tous les métaux pour former des composés ioniques tels que le chlorure de sodium NaCl, le chlorure de fer(III) FeCl3 et l'iodure d'uranium(III) UI3. Avec les non-métaux Les halogènes réagissent avec la plupart des non-métaux tels que le carbone, le dihydrogène et le silicium pour former des halogénures uploads/Finance/ halogene-wikipedia.pdf
Documents similaires










-
19
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Fev 13, 2022
- Catégorie Business / Finance
- Langue French
- Taille du fichier 0.4471MB