Schéma montrant la vitesse de chute d'un objet en fonction du temps lorsqu'il s

Schéma montrant la vitesse de chute d'un objet en fonction du temps lorsqu'il subit l'accélération de la pesanteur de la Terre (1 g). La résistance de l'air est négligée et la vitesse initiale supposée nulle. La vitesse augmente à chaque seconde de 9,81 m/s. Pesanteur Le champ de pesanteur est le champ attractif qui s'exerce sur tout corps doté d'une masse sur la Terre (ou un autre astre). Il s'agit d'un champ d'accélération, souvent appelé plus simplement pesanteur ou « g » . L'essentiel de la pesanteur terrestre est due à la gravité, mais s'en distingue du fait de l'accélération axifuge induite par la rotation de la Terre sur elle-même. La gravité terrestre découle de la loi universelle de la gravitation de Newton, selon laquelle tous les corps massifs, dont les corps célestes et la Terre, exercent un champ de gravitation responsable d'une force attractive sur les autres corps massiques. Dans le référentiel terrestre, le mouvement de rotation autour de l'axe des pôles induit une accélération d’entraînement axifuge qui, combinée à la gravité, définit la pesanteur. Cette définition est généralisable aux autres corps célestes : on parle alors, par exemple, de pesanteur de Mars. La force à laquelle est soumis un corps en raison de la pesanteur est appelée poids de ce corps et est directement reliée à la pesanteur par sa masse ; son unité de mesure est le newton, comme pour toute force. Cette force définit la verticale du lieu, direction suivant laquelle tous les corps libres tombent vers le sol en un lieu donné et qu'on peut mesurer par un fil à plomb. La pesanteur terrestre varie en fonction du lieu. Pour les besoins pratiques, la Conférence générale des poids et mesures a défini en 1901 une valeur normale de l'accélération de la pesanteur terrestre, notée g0, égale à 9,806 65 m/s2, soit approximativement 9,81 m s−2 (ou 9,81 N/kg). Cette valeur correspond à la pesanteur sur un ellipsoïde idéal approchant le niveau de la mer et à 45° de latitude. 1 2,3 Gravité Pesanteur Poids Valeur de la pesanteur terrestre Variation en fonction du lieu Valeur normale Unité d'accélération g Importance de la connaissance du champ de pesanteur Gravimétrie Objet en mouvement Chute des corps L'expérience de Galilée Poussée d'Archimède Résistance de l'air Pesanteur lunaire Notes et références Notes Références Voir aussi Bibliographie Articles connexes La gravité est la principale composante de la pesanteur. Elle résulte de l'attraction qu'exerce toute masse sur une autre masse. À tous les corps massifs, dont les corps célestes, est associé un champ de gravité qui exerce une force attractive sur les objets massiques. la première description exacte de la gravitation a été donnée par la loi universelle de la gravitation de Newton : La force de gravité exercée sur un objet de masse situé à la distance d'un corps céleste, dont la masse est supposée concentrée en son centre de masse (barycentre) , est dirigée vers le centre de l'astre et vaut : avec : G est la constante universelle de gravitation. Dans le système SI, elle vaut : G = 6,674 × 10−11 m3 kg−1 s−2 Le champ de gravité est sujet à des disparités spatiales dues aux hétérogénéités de composition et de topographies du corps céleste. En étudiant les anomalies de trajectoires des satellites gravitant autour du corps céleste, on peut déduire la distribution interne des masses ainsi que la topographie du corps survolé. La gravité varie également en fonction de la position sur Terre : elle est plus faible à l'équateur qu'aux pôles, en raison de l'inégale valeur des rayons de la Terre, et elle diminue avec l'altitude. Dans le temps, le déplacement des masses d'eau dû aux marées produit des variations périodiques de la gravité. Sommaire Gravité a Au palais de la découverte un Jardin tournant montrant l'effet de la pesanteur sur les plantes. La pesanteur est le champ de forces réel qu'on observe sur un corps céleste. Sur les objets liés à un corps céleste en rotation, tels la Terre, elle comprend une force d'inertie axifuge qui s'oppose à la force de gravité (plus précisément, elle s'y ajoute vectoriellement). Le champ de pesanteur est décrit par un champ vectoriel (noté ) dont la direction est indiquée par un fil à plomb et dont la norme (notée ) peut être mesurée par l'allongement d'un ressort de raideur connue, ou par la mesure de la période d'un pendule pesant . Il y a donc une nuance de sens entre gravité et pesanteur : la gravité est la force d'attraction entre deux masses résultant de la gravitation universelle. La pesanteur est la force d'attraction d'un corps céleste sur un objet massique proche que l'on mesure dans la pratique ; elle résulte principalement de la gravité mais aussi d'autres effets telles que le mouvement du corps, les forces de marée, etc. Un objet de masse , dans un lieu où l'accélération de la pesanteur vaut , apparaît soumis à une force de pesanteur, appelée poids, dont la valeur est . Cette force s'exerce vers le bas selon la verticale du lieu , direction suivant laquelle tous les corps libres tombent vers le sol en un lieu donné et qu'on peut mesurer par un fil à plomb. En 1903, on a défini le kilogramme-force, ou kilogramme-poids, comme unité de mesure de force. C'est le poids d'une masse de 1 kilogramme en un lieu où l'accélération de la pesanteur est égale à la valeur normale de l'accélération de la pesanteur terrestre , notée gn et valant 9,806 65 m s−2. Le kilogramme-force est une unité obsolète, valant par définition 9,806 65 newtons. La Terre tournant sur elle-même et n'étant pas un astre sphérique et homogène, l'accélération de la pesanteur dépend du lieu et des facteurs suivants : la rotation terrestre : La rotation de la Terre sur elle-même entraîne une correction consistant à ajouter à l'accélération de la gravité une accélération d’entraînement axifuge, dirigée perpendiculairement à l'axe des pôles et de module : a = (2π/T)2d avec T = 86 164,1 s et d la distance en mètres entre l'objet et l'axe de rotation de la Terre. La correction, nulle aux pôles, atteint -0,3 % sur l'équateur ; la non-sphéricité de la Terre : À cause de l'aplatissement de la Terre, l'accélération de la gravité varie avec la latitude : elle est plus forte aux pôles qu'à l'équateur (0,2 % d'écart). l'altitude : Pour une variation de l'altitude h petite devant R, la variation relative de l'accélération de la gravité vaut -2h/R, soit −3,139 × 10−7 par mètre à faible distance de la surface de la Terre ; les écarts de densité du sous-sol : ils entraînent des variations locales de la gravité que l'on néglige dans les formules générales devant la difficulté de les modéliser ; les forces de marée, notamment dues à la Lune et au Soleil. La correction correspondante varie au cours de la journée. Elle est de l'ordre de 2 × 10−7 à la latitude de 45°. Pesanteur b 4 Poids 1 c Valeur de la pesanteur terrestre Lire le média Variation en fonction du lieu d Pesanteur terrestre mesurée par le satellite GRACE de la NASA et de l'Agence aérospatiale allemande. Le graphique montre les écarts de la pesanteur réelle à la pesanteur normalisée associée à l'ellipsoïde homogène théorique modélisant la forme de la Terre. Les zones rouges sont celles où la pesanteur est plus élevée que la pesanteur théorique et les zones en bleu celles où elle est plus faible, l'amplitude totale de la variation (du bleu au rouge) étant de 1 mm/s2. le mouvement du corps dans le repère terrestre : si un corps est en mouvement dans le repère terrestre, il subit une accélération complémentaire dite accélération de Coriolis, responsable notamment du mouvement de rotation des masses d'air (cyclones et anticyclones) et d'eau océanique (spirale d'Ekman). La composante verticale de cette accélération constitue la force d'Eötvös. La formule suivante donne une valeur approchée de la valeur normale de l'accélération de la pesanteur en fonction de la latitude et pour une altitude faible devant le rayon terrestre (typiquement : quelques milliers de mètres) : avec : g en m/s2 ; h, altitude en m ; ϕ, latitude en radians dans le Système géodésique GRS 80 (1980) . Pour les besoins pratiques, la Conférence générale des poids et mesures a défini en 1901 une valeur normale de l'accélération de la pesanteur, à l'altitude 0, sur un ellipsoïde idéal approchant la surface terrestre, pour une latitude de 45°, égale à 9,806 65 m/s2, soit 980,665 Gal (une unité dérivée de l'ancien système de mesure CGS, encore parfois usitée en gravimétrie, valant 1 cm/s2). Dans le langage courant, on parle souvent de « g » comme unité de pesanteur égale à la valeur normale de la pesanteur terrestre soit 9,806 65 m/s2. On lira par exemple que la pesanteur lunaire vaut 0,16 g, c'est-à-dire 0,16 fois la pesanteur normale terrestre, ou qu'un astronaute en centrifugeuse ou un pilote de chasse en virage subit une accélération de 6 uploads/Geographie/ pesanteur.pdf

  • 23
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager