Simulation sur Matlab/Simulink et implémentation sur DSP/FPGA de la commande ve
Simulation sur Matlab/Simulink et implémentation sur DSP/FPGA de la commande vectorielle de la machine synchrone à aimants permanents (PMSM) alimenté par un onduleur de tension a Modulation vectorielle (SVM). S.Rafa. H.Zeroug. L.Hocine. K.Boudjit. rafasouad@gmail.com houcinezeroug@yahoo.com lilahocine@gmail.com. kamelboudjit@gmail.com Laboratoire des systèmes électriques industriels. Faculté d’Electronique et d’Informatique. Université des Sciences et de la Technologie Houari Boumedienne. BP N°32 El Alia, Alger, Algérie, Résumé: Les performances de la commande vectorielle appliquée à la Machine Synchrone à Aimants Permanents dépendent en grande partie des carctéristiques dynamiques et statiques de l’onduleur qui lui est associé. Le développement de la modulation de largeur d’impulsion (MLI) a apporté une plus grande souplesse dans le contrôle des convertisseurs. Parmi les variantes da la MLI, la plus en vue ces derniers temps essentiellement dans la conduite des machines à courant alternatif, la technique dite modulation vectorielle ou Space Vector Modulation (SVM). Le principe de cette technique repose sur la sélection de la séquence et le calcul des temps de conduction ou d’extinction. Dans cet article nous présentons les blocs de la simulation de la modulation vectorielle sur le logiciel MATLAB/SIMULINK avec une nouvelle méthode de la détermination de secteur et nous analysons la commande vectorielle de la PMSM associée à un onduleur de tension à SVM. La simulation de système globale est fait aussi sur le logiciel MATLAB/SIMULINK. L’implémentation de cette commande est conçue autour d’une architecteur mixte DSP TMS320F2812 -FPGA XILINUX SPARTAN-3. Mots clés : PMSM, SVM, DSP, FPGA, MATLAB/SIMULINK, commande vectorielle. 1. Introduction: La commande souvant adaptée aux convertisseurs statiques est la stratégie MLI. Plusieurs méthodes ont été dévloppées avec l’objectif de générer à la sortie de l’onduleur une tension sinusoïdale ayant le moins d’harmonique possible.[1] Pour l’onduleur de notre système de commande nous utilisons la technique de la modulation vectorielle. Le principe de cette méthode est la détermination des portions de temps (durée de modulation) qui doivent être allouées à chaque vecteur de tension durant la période d’échantillonnage. Cette commande rapprochée (SVM) permet de déterminer les séquences des allumages et des extinctions des composants du convertisseur et de minimiser les harmoniques des tensions appliquées au moteur. Pour un entraînement à courant alternatif performant on préfére une stratégie de commande évoluée. Le contrôle par flux orienté est une méthode appropriée pour satisfaire des performances élevées. Il introduit un découplage entre le flux et le couple et assure une caractéristique de réglage mécanique similaire à celle d’un moteur à courant continu à excitation séparée. La qualité de la commande vectorielle dépend en grande partie des caractéristiques dynamiques et statiques de l’onduleur. Une simulation du système globale à l’aide du logiciel MATLAB/SIMULINK permet de mettre en évidence les performances des réglages et du convertisseur à MLI vectorielle. Pour validé les résultats théorique nous avons implémenté le système dans une architecteur mixte DSP TMS320F2812 -FPGA XILINUX SPARTAN-3. Les résultats expérimentaux sont représentes. 2. Modèle mathématique de la MSAP : Afin d’obtenir une formulation plus simple et de réduire la complexité du modèle de la machine, l’établissement de son modèle mathématique sera développé sur la base des hypothèses simplificatrices à savoir que la machine est symétrique, fonctionne en régime non saturé et que les différentes pertes ainsi que l’effet des amortisseurs sont négligeables. [2] Le modèle de Park de la machine synchrone à aimants permanents à P paires de pôles est défini par le système d’équations suivant : d q q q q d d d dt d I R V dt d I R V Φ + Φ + = Φ − Φ + = . . . . ω ω Avec q q q f d d d i L i L = Φ Φ + = Φ L’équation mécanique s’écrit : r r em r r r em f C C dt d J p f C C dt d J ω ω ω − − = = Ω Ω − − = Ω Le couple électromagnétique est donné par: ( ) [ ] q f q d q d em I I I L L P C Φ + − = . . 2 3 3. Principe de la SVM : Dans cette modulation on représente par seul vecteur les trois tensions sinusoïdales de sortie que l’on désire. On approxime au mieux ce vecteur pendant chaque intervalle de modulation en agissant sur la commande des trois jeux d’interrupteur complémentaires. Cette MLI vectorielle ne s’appuie pas sur des calcules séparés pour chaque bras de l’onduleur mais sur la détermination d’un vecteur de contrôle global approximé sur une période de modulation T. [3] 4. Les étapes de la réalisation des blocs de SVM : 1 étape : Détermination des tensions de références Vα, Vβ. 2 étape : Détermination des secteurs. 3 étape : calcul des variables X, Y et Z. 4 étape : calcul de t1 et t2 pour chaque secteur. 5 étape : génèration des signaux modulants taon, tbon et tcon. 6 étape : génèration des séries d’impulsions Ta, Tb et Tc. 5. La présentation des blocs sous simulink de la SVM: Le système de simulation de SVM est basé sur le MATLAB/SIMULINK qu’est choisi en tant qu’environnement fondamental en raison de ses divers avantages uniques : l’efficacité de programmation élevée, interface graphique élégant, son architecture ouverte permettant l’adaptation aux besoins du client. A. Bloc simulink de la SVM: La simulation de cette technique se fait à travers le modèle suivant: Fig 1: Schéma bloc de la SVM. B. Détermination des Vα, Vβ: Ce bloc permet de projeter les tensions triphasés dans le référentiel (α, β) en effectuant la transformation de Clarke sous simulink, on obtient : Fig 2 : le bloc de la transformation. C. Nouvelle méthode de détermination des secteurs : Généralement, le secteur est déterminé par l’angle γ où γ= Vβ/Vα . Dans cet article le secteur est déterminé par une méthode simple basée sur les tensions Vα, Vβ, La détermination est faite comme dans le tableau 1, où A2 est le signe de V α et A1 est le signe de Vβ. On note que A2 égale à 0 si V α est négatif sinon A2 égale à 1. A1 égale à 0 si Vβ est négatif sinon A1 égale à 1. A0 égale à 1 si la valeur absolue du rapport (V β / α V) est supérieur ou égale à (tan 60 = 1.732) autrement A0 égale à 0. Cette méthode est employée par bibhu [4] pour la détermination du secteur pour la DTC. A2 A1 A0 sector 0 0 0 5 0 0 1 4 0 1 0 6 0 1 1 1 1 0 0 3 1 0 1 4 1 1 0 2 1 1 1 1 Tab.1: détermination du secteur. Le bloc simulink est présenté par la figure suivante: Fig 3 : le bloc de détermination du secteur. D. Calcul des variable X, Y et Z : Les trois variables sont données par les équations suivantes : α β α β β V Vdc T V Vdc T Z V Vdc T V Vdc T Y V Vdc T X . . 2 3 . . 2 3 . . 2 3 . . 2 3 . . 3 − = + = = Le bloc est présenté par la figure suivante: Fig 4 : bloc de calcul de X, Y et Z. E. Calcul de t1 et t2 : Dans cette étape le bloc calcul les temps t1 et t2 pour chaque secteur à partir des valeurs de X, Y et Z suivant le tableau ci-dessous : sector 1 2 3 4 5 6 t1 Z Y -Z -X X -Y t2 Y -X X Z -Y -Z Tab 2: t1 et t2 en fonction de X, Y et Z. F. Détermination de taon, tbon et tcon : Ce bloc génère les signaux modulants d’après les formules suivantes : taon = (T-t1-t2)/ 2. tbon = taon + t1. tcon = tbon + t2. On adopte, sous SIMILINK le modèle suivant pour chacun des six secteurs (ici, le secteur 1). Fig 5 : bloc de détermination de taon, tbon et tcon. G. Détermination de Ta, Tb et Tc : Ce bloc génère des séries d’impulsions qui serviront par la suite à réaliser les signaux de commande entrant dans le modèle de l’onduleur, suite à la comparaison des signaux modulants avec une porteuse triangulaire de haute fréquence (20khz). Sous SIMILINK ce bloc se présente sous l’aspect suivant : Fig 6 : bloc de détermination de Ta, Tb et Tc. Fig 7 : Le subsysteme Out_1. Les signaux txon sont ordonnés d’une manière bien précise (tableau ci-dessous). Phase /sector 1 2 3 4 5 6 Ta tbon taon taon tcon tbon tcon Tb taon tcon tbon tbon tcon taon Tc tcon tbon tcon taon taon tbon Tab 3 : assignement de signaux txon au registres Ta, Tb et Tc. 6. La commande vectorielle de la PMSM: La technique appliquée à la PMSM consiste à mantenir Id nulle pour produire un couple maximal et utiliser la composante Iq pour réaliser uploads/Industriel/ onduleur-1.pdf
Documents similaires










-
31
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Apv 02, 2021
- Catégorie Industry / Industr...
- Langue French
- Taille du fichier 0.2393MB