Thermodynamique branche de la physique qui étudie les systèmes macroscopiques e

Thermodynamique branche de la physique qui étudie les systèmes macroscopiques en équilibre et les transferts de chaleur La thermodynamique est la branche de la physique qui traite de la dépendance des propriétés physiques des corps à la température, des phénomènes où interviennent des échanges thermiques, et des transformations de l'énergie entre différentes formes. La thermodynamique peut être abordée selon deux approches différentes et complémentaires : phénoménologique et statistique. La thermodynamique phénoménologique ou classique a été l'objet de nombreuses avancées dès le xviie siècle. Elle s'appuie sur des considérations macroscopiques pour établir un nombre réduit de principes et de lois, issus d'observations expérimentales. La thermodynamique statistique, qui s'est développée à partir du milieu du xixe siècle, s'appuie quant à elle sur des considérations moléculaires et sur le calcul des probabilités appliqué à un grand nombre de particules. Elle s'attache à analyser la structure de la matière et à établir un lien entre ses propriétés et les principes de la thermodynamique phénoménologique. L 'étude des gaz parfaits et celle des machines thermiques, qui échangent de l'énergie avec l'extérieur sous forme de travail et de chaleur, occupent une place centrale dans la thermodynamique : elles ont permis le développement de très nombreuses machines et méthodes industrielles, et servi de base à d'importantes découvertes en chimie[1], en astrophysique[2] et dans de nombreux autres domaines scientifiques. Les notions de chaud et de froid ont existé de tout temps, mais ce n'est véritablement qu'à partir du xviiie siècle que la notion de chaleur entre dans le domaine des sciences[3]. En 1780, Pierre Simon de Laplace et Antoine Laurent de Lavoisier écrivent ainsi conjointement[4] : « Quelle que soit la cause qui produit la sensation de la chaleur, elle est susceptible d’accroissement et de diminution, et, sous ce point de vue, elle peut être soumise au calcul. Il ne paraît pas que les anciens aient eu l’idée de mesurer ses rapports, et ce n’est que dans le dernier siècle que l’on a imaginé des moyens pour y parvenir. ». Centrée initialement sur les notions de chaleur et de température, la thermodynamique phénoménologique se préoccupe à partir la fin du xviiie siècle de définir les différentes formes d'énergie, de comprendre les transferts entre ces différentes formes et d'expliquer l'impact de ces transferts sur les propriétés physiques de la matière. Essentiellement basée sur des expérimentations, elle est complétée à partir du xixe siècle par les apports de la physique statistique qui, s'appuyant sur la théorie atomique de la matière, la physique quantique et de puissants outils mathématiques, lui donnent une assise théorique solide qui permettra notamment de comprendre la notion d'irréversibilité de certaines transformations, ou encore le comportement de la matière dans des conditions extrêmes de pression ou de température. L 'apparente simplicité des concepts de base de la thermodynamique, l'immensité de ses champs d'application, et la profondeur des approfondissements théoriques qu'elle suscite ont fasciné de très nombreux scientifiques et notamment conduit Albert Einstein à déclarer : « Une théorie est d'autant plus impressionnante que ses fondements sont simples, qu'elle se rapporte à des domaines variés et que son champ d'application est vaste. C'est pourquoi la thermodynamique classique me fait une si forte impression. C'est la seule théorie physique de portée universelle dont je suis persuadé que, dans le cadre où ses concepts de base s'appliquent, elle ne sera jamais mise en défaut[5]. » Histoire L 'étude des gaz parfaits et de leur comportement lorsqu'on fait varier leur température, leur pression ou leur volume est un des principaux fondements historiques de la thermodynamique. Son déroulement fournit une illustration des méthodes expérimentales mises au point pour cette science, ainsi que du lien entre thermodynamique phénoménologique et statistique. Découvertes et méthodes phénoménologiques Dès 1662, le physicien irlandais Robert Boyle démontre expérimentalement qu'un gaz maintenu à température constante vérifie la relation suivante entre sa pression et son volume : . C'est la loi de Boyle-Mariotte, qui établit les résultats des transformations isothermes d'un système gazeux. En 1787, le physicien français Jacques Charles démontre qu'un gaz à pression constante vérifie la relation suivante entre son volume et sa température : . C'est la loi de Charles, qui établit les résultats des transformations isobares d'un système gazeux. En 1802, le physicien français Joseph Louis Gay-Lussac démontre qu'un gaz à volume constant vérifie la relation suivante entre sa pression et sa température : . C'est la loi de Gay-Lussac, qui établit les résultats des transformations isochores d'un système gazeux. En 1811, le physicien italien Amedeo Avogadro démontre que des volumes égaux de gaz parfaits différents, aux mêmes conditions de température et de pression, contiennent le même nombre de molécules. C'est la loi d'Avogadro. Et en 1834 le physicien français Emile Clapeyron énonce la loi des gaz parfaits, qui synthétise les quatre lois précédentes et lie entre elles les quatre variables d'état que sont la pression , le volume , la température et la quantité de matière (nombre de moles) d'un système thermodynamique constitué de gaz parfait : où est la constante des gaz parfaits, valant 8,314 462 1 J/(mole·K). Gaz parfaits : du phénoménologique à la statistique Principe expérimental de la loi de Boyle. Principe expérimental de la loi de Charles. Les expériences qui ont conduit à ce résultat relèvent toutes de la même méthode : le physicien fige deux variables pour étudier les liens entre les deux autres. Boyle a ainsi figé et pour étudier les liens entre et , Charles et pour étudier et , Gay-Lussac et pour étudier et , et Avogadro et pour étudier et . Théorie atomique et physique statistique En parallèle du développement de ces études de nature phénoménologique, la théorie atomique de la matière fait des avancées remarquables, sous l'impulsion, notamment, du britannique John Dalton, qui énonce dès 1803 une théorie précise de la structure atomique de la matière, explique les réactions chimiques par l'interaction entre atomes, et jette les bases du tableau périodique des éléments, et de l'écossais Robert Brown qui décrit le mouvement brownien en 1827. Les thermodynamiciens utilisent leurs résultats et les méthodes correspondantes pour créer l'approche statistique de la discipline : le physicien allemand Rudolf Clausius invente en 1850 le terme « entropie », définit la variable d'état correspondante comme une grandeur d'origine statistique, et énonce ce qui devient la formulation moderne du deuxième principe de la thermodynamique. Quelques années plus tard, l'écossais James Clerk Maxwell et l'autrichien Ludwig Boltzmann établissent la statistique de Maxwell-Boltzmann qui détermine la répartition des particules entre différents niveaux d'énergie. L 'américain Willard Gibbs, dans les années 1870, est actif à la fois dans la thermodynamique classique et dans son approche statistique : il définit l'enthalpie libre, le potentiel chimique, la notion de variance et la formule pour la calculer, ainsi que le terme « mécanique statistique » avec les notions statistiques correspondantes (ensembles canonique, micro-canonique et grand-canonique) encore utilisées depuis lors. Leurs travaux débouchent notamment sur la théorie cinétique des gaz, qui conforte les résultats de l'approche phénoménologique en expliquant la nature et l'origine de deux variables d'état fondamentales : la température, qui est une mesure de l'énergie cinétique statistique des molécules agitées par le mouvement brownien, et la pression, qui est créée par les chocs statistiques des molécules sur la paroi du récipient contenant le gaz[6]. Cette théorie explique en outre pourquoi les formules établies par la thermodynamique phénoménologique ne sont applicables que pour des pressions relativement faibles[7]. Cette complémentarité entre approches macroscopique et microscopique est une caractéristique importante de la thermodynamique, qui est non seulement une science des transformations de l'énergie, mais aussi des changements d'échelle[8]. Les notions de chaleur et de température sont essentielles en thermodynamique. De très nombreuses avancées de cette science sont basées sur l'étude des phénomènes qui dépendent de la température et de ses changements. Chaleur et température Chacun a une connaissance intuitive de la notion de température et de chaleur : un corps est chaud ou froid, selon que sa température est plus ou moins élevée. Mais la définition précise et scientifique de ces deux concepts n'a pu être établie qu'à partir de la moitié du xixe siècle. Simulation du mouvement brownien. Machines thermiques L ’un des grands succès de la thermodynamique classique est d'avoir défini la température absolue d’un corps, qui a mené à la création de l'échelle kelvin. Celle-ci donne la température minimale théorique valable pour tous les corps : zéro kelvin, soit −273,15 °C. Il s'agit du zéro absolu dont le concept apparaît pour la première fois en 1702 avec le physicien français Guillaume Amontons et qui fut formalisé en 1848 par William Thomson, plus connu sous le nom de Lord Kelvin. La chaleur fut plus difficile à définir scientifiquement. Une ancienne théorie, défendue notamment par Lavoisier, attribuait à un fluide spécial (invisible, impondérable ou presque) les propriétés de la chaleur, le calorique, qui circulerait d’un corps à un autre. Plus un corps est chaud, plus il contiendrait de calorique. Cette théorie est fausse au sens où le calorique ne peut pas être identifié à une quantité physique conservée. La thermodynamique statistique a permis de définir la chaleur uploads/Industriel/ thermodynamique-wikipedia.pdf

  • 19
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager