Effet Doppler phénomène physique L 'effet Doppler, ou effet Doppler-Fizeau, est

Effet Doppler phénomène physique L 'effet Doppler, ou effet Doppler-Fizeau, est le décalage de fréquence d’une onde (mécanique, acoustique, électromagnétique ou d'une autre nature) observé entre les mesures à l'émission et à la réception, lorsque la distance entre l'émetteur et le récepteur varie au cours du temps. Si on désigne de façon générale ce phénomène physique sous le nom d'effet Doppler, le nom d'« effet Doppler-Fizeau » est réservé aux ondes électromagnétiques. Cet effet est présenté par Christian Doppler en 1842 dans l'article Sur la lumière colorée des étoiles doubles et de quelques autres astres du ciel[1] (Über das farbige Licht der Doppelsterne und einige andere Gestirne des Himmels), confirmé sur les sons par le physicien néerlandais Effet Doppler d'une source sonore en mouvement Christoph Buys Ballot (en utilisant des musiciens jouant une note calibrée sur un train de la ligne Utrecht-Amsterdam), et est également proposé par Hippolyte Fizeau pour les ondes lumineuses en 1848. L 'effet Doppler se manifeste par exemple pour les ondes sonores dans la perception de la hauteur du son d’un moteur de voiture, ou de la sirène d’un L'effet Doppler Reconstitution du passage d’une voiture 0:00 0:00 / 0:00 / 0:00 véhicule d’urgence. Le son est différent selon que l’on se trouve à l'intérieur du véhicule (l’émetteur étant immobile par rapport au récepteur), ou que le véhicule se rapproche du récepteur (le son étant alors plus aigu) ou s’en éloigne (le son étant plus grave). Il faut cependant remarquer que la variation de la hauteur du son dans cet exemple est due à la position de l'observateur par rapport à la trajectoire du mobile. En effet, la vitesse du mobile perçue par l'observateur varie suivant l'angle formé par sa ligne de visée vers le mobile et la trajectoire de celui-ci. On a : . Il n'y a pas de modulation si l'observateur est exactement sur la trajectoire et va à la même vitesse et dans le même sens que l'émetteur. Cet effet est utilisé pour mesurer une vitesse, par exemple celle d’une voiture, ou bien celle du sang lorsqu’on réalise des examens médicaux, notamment les échographies en obstétrique ou en cardiologie. Il revêt une grande importance en astronomie car il permet de déterminer directement la vitesse d’approche ou d’éloignement des objets célestes (étoiles, galaxies, nuages de gaz, etc.). Toutefois, le décalage vers le rouge cosmologique, qui traduit la fuite apparente des galaxies et constitue une preuve de l’expansion de l’espace, est d’une autre nature : il n’est pas justifiable par un effet Doppler car il est dû (de façon imagée) à un étirement de l’espace produisant lui-même un étirement des longueurs d’onde (la longueur d’onde d’un rayonnement suivant fidèlement la taille de l’Univers). Imaginons le cas d'une personne sur une plage, debout dans l’eau, au bord du Effet Doppler-Fizeau Explication physique rivage. Des vagues arrivent à ses pieds toutes les dix secondes. La personne marche en direction du large : elle va à la rencontre des vagues, celles-ci l’atteignent alors avec une fréquence plus élevée, par exemple toutes les huit secondes. Lorsque cette personne se met à courir vers le large, les vagues l'atteignent alors toutes les cinq secondes. Lorsque cette personne fait demi-tour, et marche puis court en direction de la plage, les vagues l’atteignent avec une fréquence moins élevée, par exemple toutes les douze, puis quinze secondes. La fréquence des vagues ne dépend pas du mouvement de la personne par rapport à l’eau (elle est notamment indépendante de la présence ou non d’un courant), mais du mouvement de la personne par rapport à l’émetteur des vagues (en l’occurrence un lieu au large où le courant s’oppose au vent). De manière inverse, on peut imaginer une source mobile de vagues, par exemple un aéroglisseur dont le jet d’air générerait des vagues à une fréquence régulière. Si l’aéroglisseur se déplace dans une direction, alors les vagues sont plus resserrées vers l’avant du mouvement et plus espacées vers l’arrière du mouvement ; sur un lac fermé, les vagues frapperont la berge à des fréquences différentes. Effet Doppler-Fizeau galiléen Supposons que l’émetteur et le récepteur se déplacent sur une même droite. Il y a trois référentiels galiléens à considérer : 1. Le référentiel du milieu dans lequel se propage l’onde (par exemple l’atmosphère pour une onde sonore). On note c la célérité de l’onde dans ce référentiel (ce n’est Formulation mathématique … pas forcément la vitesse de la lumière). 2. Le référentiel lié à l’émetteur (source) : appelons vem la vitesse algébrique de l’émetteur (source) par rapport au référentiel (1). 3. Le référentiel lié au récepteur : appelons vrec la vitesse du récepteur par rapport au référentiel (1). Par convention, les vitesses seront comptées comme positives suivant la direction et dans le sens de propagation du signal (de l’émetteur vers le récepteur). Ainsi une vitesse vem positive et vrec négative correspondra à un rapprochement entre source et récepteur tandis qu’une vitesse vem négative et vrec positive correspondra à un éloignement. Si ƒem est la fréquence de l’onde dans le référentiel de la source, alors le récepteur va recevoir une onde de fréquence ƒrec En effet, supposons que la source émette des bips à une fréquence ƒem et que le mouvement relatif entre émetteur et récepteur se fasse selon la droite les joignant. Lorsque le deuxième bip est produit, le premier bip a parcouru une distance d0 = c·Tem dans le référentiel (1), avec Tem = 1/ƒem. La source s’étant déplacée de vem·Tem pendant le temps Tem, la distance séparant deux bips est d1 = (c - vem)·Tem. Calculons le temps Trec séparant la détection des deux bips par le récepteur. Ce dernier reçoit le premier bip. Au bout de ce temps Trec, il a parcouru la distance vrec·Trec au moment où il reçoit le deuxième bip. Durant ce laps de temps Trec, le deuxième bip aura donc parcouru la distance d2 = d1 + vrec·Trec = c·Trec, ce qui donne bien : Si seule la source est mobile par rapport au référentiel (vrec = 0), on a alors : et si seul le récepteur est mobile par rapport au référentiel (vem = 0), on a : Les deux situations ne sont pas symétriques : en effet, si le récepteur « fuit » l’émetteur à une vitesse supérieure à c, il ne recevra jamais d’onde, alors que si l’émetteur fuit un récepteur immobile, celui-ci recevra toujours une onde. On ne peut pas inverser le rôle de l’émetteur et du récepteur. Dans le cas classique, il y a dissymétrie dans le décalage fréquentiel selon que l’émetteur ou le récepteur est en mouvement (les fréquences reçues diffèrent par les termes du second ordre pour une même fréquence d’émission). Cette dissymétrie est due à la présence du milieu dans lequel se propagent les ondes, elle est justifiée pour les ondes sonores. Effet Doppler et invariance galiléenne … On peut vérifier que la formule: résulte directement de l'invariance galiléenne des longueurs (ici la longueur d'onde) qui s'écrit en notant respectivement et la période et la longueur d'onde dans le référentiel du milieu de propagation au repos: . La longueur d'onde qui est la même dans les trois référentiels ne dépend que de la vitesse de la source par rapport au référentiel de référence: . Calcul relativiste rapide Dans le cas d’ondes électromagnétiques dans le vide, la vitesse de l’onde est la vitesse de la lumière, elle ne dépend pas du référentiel. On doit alors traiter le problème dans le cadre de la relativité restreinte et on s’attend alors à trouver un effet parfaitement symétrique puisqu’on ne peut pas distinguer entre vitesse de l’émetteur et vitesse du récepteur, seule comptant la vitesse relative entre les deux. … Cependant dans le cas d’ondes électromagnétiques dans un milieu diélectrique, la vitesse de l’onde dépend de la nature du milieu (et notamment de son indice de réfraction) et du référentiel (combinaison de la vitesse de l'onde dans le milieu diélectrique et de la vitesse du milieu diélectrique dans le référentiel considéré) comme le montre l'expérience de Fizeau. Avant de donner la formule de l’effet Doppler relativiste dans le cas général, voici d’abord une démonstration simplifiée rapide de la formule relativiste dans le cas où tous les mouvements se font le long d’un même axe, celui le long duquel se propage le signal. Le principe du calcul consiste à tenir compte de l’effet de dilatation du temps qui accompagne le passage d’un repère au repos à un repère en mouvement. Changeons de notation avant de passer à une symétrisation du problème. La vitesse entre l’émetteur et le récepteur sera notée v et sera comptée comme positive si elle correspond à une vitesse d’éloignement. C’est la convention généralement adoptée en astronomie pour la vitesse radiale. Par conséquent si la source se déplace seule, sa vitesse des formules antérieures est vem=-v et si c’est le récepteur qui se déplace seul, sa vitesse est vrec=+v. Considérons d’abord que c’est la source qui se déplace. Si on la calculait par la formule classique précédente, la fréquence du signal à la réception uploads/Litterature/ effet-doppler-wikipedia.pdf

  • 21
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager