Exame – Corrigé UFR Sciences Physiques L3 S5- Mécanique des Fluides I (Daniel H
Exame – Corrigé UFR Sciences Physiques L3 S5- Mécanique des Fluides I (Daniel Huilier) UFR de Sciences Physiques : Licence LPAI – L3-S5 Mécanique des Fluides (Daniel Huilier) Examen final du 2008, Vendredi 25 janvier 2008 Amphi Carnot 14h00-16h00 Toutes notes et documents autorisées, sauf les ouvrages. Première partie : QCM Cocher la(les) case(s) justes, réponses multiples possibles, Barême : 1 point/réponse globale correcte, sinon 0) A) Un tube de Venturi sert à mesurer, dans une installation hydraulique : □ □ □ Une vitesse d’écoulement un débit massique un débit volumique B) Dans un écoulement rampant, globalement, les forçes suivantes se compensent : □ □ □ D’inertie et de pression de pression et de viscosité d’inertie et de viscosité C) Un écoulement non visqueux, isotherme et incompressible , est régi par les équations : □ □ □ De Navier-Stokes d’Euler de Bernouilli D) Quelle est l’unité possible (physiquement correcte sur le plan dimensionnel) d’une contrainte : □ □ □ Pa N/m2 Poiseuille (Pl) E) Un écoulement est dit transsonique si le nombre de Mach M (rapport de la vitesse du fluide/vitesse locale du son) est : □ □ □ est supérieur à 5 est inférieur à 0,5 est tel que 0.8 < M < 1.2 F) La traînée d’un corps en déplacement dans un fluide est induite par des forces : □ □ □ De pression De viscosité de pression et de viscosité G) Dans un fluide compressible, le coefficient de traînée est fonction : □ □ □ Du nombre de Reynolds Du nombre de Mach des nombres de Reynolds et de Mach 1 Exame – Corrigé UFR Sciences Physiques L3 S5- Mécanique des Fluides I (Daniel Huilier) H) Situez dans le temps du plus ancien vers le plus récent les travaux : Magnus, Torricelli, Navier, Bernouilli : □ □ Torricelli, Magnus, Navier, Bernouilli Torriccelli, Bernouilli, Navier, Magnus □ □ Bernouilli, Navier, Torricelli, Magnus Bernouilli, Torricelli, Magnus, Navier I) Effet Magnus : Expliquez brièvement pourquoi une sphère en rotation (voir figure explicite ci contre) est soumise à une force dite de Magnus dirigée vers le bas. On pourra se placer en fluide parfait pour répondre. □ La trajectoire est infléchie vers le haut □ La trajectoire est infléchie vers le bas J) Quel est l’ordre de grandeur de la vitesse de chute limite d’une goutte d’eau de diamètre D = 5 mm (taille maximale en cas d’averse) dans de l’air. □ □ □ 0.53 m/s 0.14 m/s 10 m/s _________________________________________ Deuxième partie : Exercice sur les écoulements en conduite cylindrique lisse (Barême : 9 points) De l’huile de densité 0,85 s’écoule dans une conduite cylindrique lisse horizontale de rayon R = 60 mm, Le nombre de Reynolds de l’écoulement est de 250. La viscosité dynamique est de 0,02 Ns/m2. a) calculer la perte de charge linéaire Δp (par mètre de longueur de conduite), l’exprimer aussi en équivalent de hauteur de colonne d’eau (mCE) b) Déterminez la vitesse de débit um. Donnez aussi la vitesse sur l’axe. c) A partir du profil de vitesse, déterminez la distance par rapport à l’axe de la conduite où la vitesse locale est égale à cette vitesse de débit. d) Calculez la contrainte visqueuse à la paroi. e) Déterminez enfin la puissance dissipée si la conduite fait 100 mètres de long. f) On multiplie le débit par 40. Calculer alors la nouvelle perte de charge linéaire Δp (par mètre de longueur de conduite). g) Que devient cette perte de charge linéaire si la conduite présente une rugosité relative ε/D = 0.02 h) Déterminez enfin la puissance dissipée (à fournir) pour transporter le fluide à débit initial (Reynolds = 250), sur une longueur de 100 mètres, sachant que la conduite est inclinée de 30° vers le haut. 2 Exame – Corrigé UFR Sciences Physiques L3 S5- Mécanique des Fluides I (Daniel Huilier) Diagramme de Nikuradse Exercice complémentaire Traînée d’une sphère de liège dans une rivière Source : Munson et al. Page 615 Une sphère de liège de 2 pouces (inches) de diamètre est attachée au fond d’une rivière par un câble fin. Sachant que le coefficient de traînée de la sphère est de 0.5 et que l’on néglige la masse et la traînée du câble, déterminez la vitesse d’écoulement de la rivière. Le poids spécifique (ρg) du liège est de 13 lb/ft3 (Rappels : 1 lb = 4.448 N, 1 foot = 0.3048 m, 1 inch = 2.54 cm) Réponses : L’écoulement est laminaire, 256 . 0 250 / 64 Re 64 = = = λ La vitesse de débit est donnée par : 3 Exame – Corrigé UFR Sciences Physiques L3 S5- Mécanique des Fluides I (Daniel Huilier) s / m 049 . 0 ) m 12 . 0 . x m / kg 850 /( m . Ns 02 . 0 x 250 D / 250 D / 250 U 3 2 = = ρ μ = ν = − Vitesse maximale sur l’axe : en laminaire 2 fois la vitesse de débit = 0.098 m/s La perte de charge linéaire est donnée par : Pa 177 . 2 m 24 . 0 s / m ) 049 . 0 ( mx 1 x m / kg 850 x 256 . 0 D . 2 LU . h g p 2 2 2 3 2 = = ρ λ = Δ ρ = Δ mmCe 222 . 0 ) s / m 81 . 9 x m / kg 1000 /( Pa 177 . 2 hCem 2 3 = = Δ Contrainte à la paroi : Pa 0653 . 0 m 2 / m 06 . 0 Pax 177 . 2 L 2 R . p p = = Δ = τ Autre calcul : Pa 0653 . 0 06 . 0 / 098 . 0 x 2 x 02 . 0 R / U 2 ) R r ( r U . AXE p = − = μ − = = ∂ ∂ μ = τ Puissance dissipée : Watt 12064 . 0 ) s / m 06 . 0 ( x 1416 . 3 sx / m 049 . 0 mx 100 Pax 177 . 2 R . . U . L . p 2 2 = = π Δ Autre calcul : Watt 12064 . 0 s / m 049 . 0 x m 100 x m 06 . 0 x 1416 . 3 x 2 x Pa 0653 . 0 RLU 2 . p = = π τ Pour un nombre de Reynolds de 10000, en conduite lisse, on a le régime de Blasius : λ =0.3164.Re-1/4 Soit 03164 . 0 = λ La vitesse de débit est aussi multipliée par 40, soit : 1.96 m/s La perte de charge linéaire est donnée par : Pa 5 . 430 m 24 . 0 s / m ) 96 . 1 ( mx 1 x m / kg 850 x 03164 . 0 D . 2 LU . h g p 2 2 2 3 2 = = ρ λ = Δ ρ = Δ En conduite horizontale, la puissance sur 100 mètres est donnée par : Puissance dissipée : Watt 954 ) m 06 . 0 ( x 1416 . 3 sx / m 96 . 1 mx 100 Pax 5 . 430 R . . U . L . p 2 2 = = π Δ En conduite rugueuse, d’après les courbes de Nikuradsé : λ = 0.0525 En conduite inclinée de 30° vers le haut, la différence de pression supplémentaire à vaincre est de : kPa 417 5 . 0 x 100 x 81 . 9 x 850 ) 30 sin( . L . g . p huile = = ° ρ = Δ sur 100 mètres Globalement la puissance vaut : Watt 231 ) m 06 . 0 ( x 1416 . 3 x s / m 049 . 0 x Pa 417000 R . . U . p 2 2 = = π Δ 4 Exame – Corrigé UFR Sciences Physiques L3 S5- Mécanique des Fluides I (Daniel Huilier) Traînée d’une sphère de liège dans une rivière Source : Munson et al. Page 615 Une sphère de liège de 2 pouces (inches) de diamètre est attachée au fond d’une rivière par un câble fin. Sachant que le coefficient de traînée de la sphère est de 0.5 et que l’on néglige la masse et la traînée du câble, déterminez la vitesse d’écoulement de la rivière. Le poids spécifique (ρg) du liège est de 13 lb/ft3 (Rappels : 1 lb = 4.448 N, 1 foot = 0.3048 m, 1 inch = 2.54 cm) Poids de la sphère de liège : Volume de la sphère : 3 6 3 3 m 10 x 642 . 68 ) 0254 . 0 ( 3 4 R 3 4 Vol − = π = π = Masse spécifique : 3 3 3 3 m / N 2042 m ) 3048 . 0 ( N 448 . 4 x 13 ft / lb uploads/Litterature/ examen-huilier-ufr25-02-2008-corrige 1 .pdf
Documents similaires










-
30
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Jui 23, 2021
- Catégorie Literature / Litté...
- Langue French
- Taille du fichier 0.1753MB