Dénombrement et espace de probabilité 4 I- Le modèle probabiliste Voici les pre
Dénombrement et espace de probabilité 4 I- Le modèle probabiliste Voici les premières phrases d'un manuel (1): "La théorie des probabilités est une science mathématique étudiant les lois régissant les phénomènes aléatoires. Un phénomène est aléatoire si, reproduit maintes fois, il se déroule chaque fois un peu différemment, de sorte que le résultat de l'expérience change d'une fois à l'autre d'une manière aléatoire, imprévisible." L'usage même du mot expérience sous-entend que le phénomène aléatoire est observé par le biais d'un critère bien défini, et que le résultat de cette observation peut être décrit sans ambiguïté. L'expérience peut aussi être répétée, et on suppose que chacun des résultats possibles est observé avec une certaine fréquence dont la valeur se stabilise si on répète l'expérience maintes et "maintes fois". C'est cette "loi" que présuppose l'existence d'un modèle probabiliste. Ce premier chapitre est une rapide présentation du cadre formel des modèles probabilistes. 1- Evènements Etant donnée une expérience aléatoire, on note Ω l'ensemble de tous les résultats possibles de cette expérience. Un singleton de Ω est appelé évènement élémentaire. Un sous-ensemble A de Ω est appelé un évènement . Un évènement A est donc un ensemble constitué de résultats possibles de l'expérience. Si le résultat d'une expérience est dans A, on dit que A est réalisé. Exemple 1-1 : On détermine le sexe d'un nouveau-né. On posera : Ω = {g, f} Le résultat g signifie que le nouveau-né est un garçon et f que c'est une fille.• Exemple 1-2 : Sept étudiants doivent passer un oral d'examen. On leur distribue un numéro d'ordre. On pose : Ω = {tous les alignements des sept lettres a, b, c, d, e, f, g} Le résultat cfabdeg signifie que l'étudiant c est le premier, a le second, .... L'ensemble des arrangements qui commencent par cf est un évènement.• 1 H.Ventsel : Théorie des probabilités. (Ed.MIR, traduction française 1973). 5 Exemple 1-3 : L'expérience consiste à déterminer la dose d'anésthésique minimale (exprimée en ml) à administrer à un patient pour l'endormir. On choisit : Ω = ] 0, +∞[ L'évènement ] 2, 3] est réalisé si la dose minimale à administrer est comprise entre 2 et 3, c'est-à-dire si une quantité supérieure ou égale à 3 suffit à endormir le patient, mais une quantité inférieure à 2 est insuffisante.• Dans le cadre de la théorie des probabilités, un évènement est généralement défini comme l'ensemble des résultats ayant une propriété donnée. La plupart du temps, l'ensemble A est noté comme la propriété qui le définit. Donnons quelques exemples de telles assimilations : Ω : évènement certain Ø : évènement impossible A B : évènement (A ou B) A B : évènement (A et B) Ac : (non A), évènement contraire de A A B = Ø : les évènements A et B sont incompatibles Exercice 1-1 : Soit Ω l'ensemble des résultats possibles d'une expérience aléatoire, et soient A, B et C des évènements. Traduire en termes ensemblistes les évènements : a) les trois évènements A, B et C sont réalisés b) aucun des évènements A, B ou C n'est réalisé c) au moins un des évènements est réalisé d) deux au plus des évènements est réalisé 2- Loi de probabilité, espace de probabilité On tire une boule dans une urne contenant 2 boules blanches, 1 noire, 4 vertes, 5 rouges, et on regarde sa couleur. Si on répète cette expérience, la fréquence avec laquelle on obtient une boule rouge se stabilise peu à peu sur une valeur, égale ici à 5/12. On dit couramment qu'on a 5 chances sur 12 de tirer une boule rouge. Dans le cadre d'un modèle mathématique de cette expérience aléatoire, on dira que l'évènement "tirer une boule rouge" a la probabilité 5/12. Plus généralement, dans un modèle probabiliste, chaque évènement est pondéré par un nombre compris entre 0 et 1, sa probabilité. Ces probabilités doivent respecter certaines règles de compatibilité, naturelles si on les interprète en termes de "nombre de chances sur 100". L'additivité est la principale de ces règles. Appliquée à un cas particulier dans notre exemple, elle exprime simplement que, puisqu'on a 5 chances sur 12 de tirer une boule rouge et 2 chances sur 12 de tirer une 6 blanche, on a 5+2 chances sur 12 de tirer une boule soit rouge soit blanche. L'autre règle dit seulement que si on tire une boule, on a 100% de chances de …tirer une boule… Définition 1-1 : Soit Ω un ensemble. Une loi de probabilité P sur Ω est une fonction qui à tout évènement A associe un nombre réel P(A), et qui a les trois propriétés : a) 0 ≤ P(A) ≤ 1, b) P (Ω) = 1 c) Pour toute famille finie ou dénombrable (An)n∈I d'évènements deux à deux disjoints : P( n∈I An) = ∑ n∈I P(An) . (Ω, P) s'appelle un espace de probabilité. • Exemple 1-4 : On lance un dé et on observe la face du dessus. On posera : Ω = {1, 2, 3, 4, 5, 6} et on supposera que le dé est parfaitement équilibré, de sorte que la probabilité de chaque face est la même : P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1 6 . Remarquons qu'alors, la probabilité de tout évènement est calculable en utilisant la propriété c) de la définition. Par exemple, comme {1, 3, 4} est la réunion des trois ensembles 2 à 2 incompatibles {1}, {3} et {4}, on a : P({1, 3, 4}) = P({1}) + P({3}) + P({4}) = 1 6 + 1 6 + 1 6 = 3 6 = 1 2 .• Plus généralement, soit Ω un ensemble fini : Ω = {ω1, ω2, ...., ωn} Définir une loi de probabilité P sur Ω revient à se donner n réels positifs ou nuls p1, p2, ...., pn tels que ∑ k=1 n pk = 1, et à poser, pour tout indice k, P({ωk}) = pk. La loi de probabilité sur Ω est alors complètement déterminée car, étant donné un évènement A, P(A) est calculable en additionnant les probabilités pk de chacun des évènements élémentaires {ωk} qui composent A. Il en est de même si Ω est un ensemble dénombrable, les sommes finies sont alors remplacées par les sommes de séries. Exercice 1-2 : Soit (Ω, P) un espace de probabilité. Répondre aux questions en utilisant la définition 1-1 : a) Si A est un évènement de probabilité P(A) connue, que vaut P(Ac) ? b) Si A B, comparer P(A) et P(B). c) Calculer P(A ou B) en fonction de P(A et B), P(A) et P(B). 7 d) Montrer que P(A ou B) ≤ P(A)+P(B). Généraliser cette inégalité à un nombre fini d'évènements. On pourrait aussi démontrer les propriétés suivantes : Proposition 1-1 : a) Pour toute famille finie ou dénombrable (An)n∈I d'évènements : P( n∈I An ) ≤ ∑ n∈I P(An) . b) Si (An)n∈ est une suite croissante d'évènements : P( n∈ An ) = lim n → + ∞ P(An) c) Si (An)n∈ une suite décroissante d'évènements : P( n∈ An ) = lim n → + ∞ P(An) • 3- Le cas où les évènements élémentaires sont équiprobables Soit (Ω, P) un espace de probabilité correspondant à une expérience aléatoire dont l'ensemble des résultats possibles est fini : Ω = {ω1, ω2, ...., ωn} Supposons que chaque résultat "a autant de chances d'être réalisé qu'un autre", soit, en termes probabilistes, que P est telle que : P({ω1}) = P({ω2}) = ... = P({ωn}) Comme la somme de ces n nombres est 1, leur valeur commune est égale à 1/n . Soit maintenant un évènement A. Sa probabilité est : P(A) = ∑ k / ωk∈A P({ωk}) = card(A) . 1 n = card(A) card(Ω) Cette loi de probabilité est souvent appelée loi uniforme sur Ω. Calculer des probabilités par une méthode directe dans ce cas revient donc à dénombrer des ensembles. Exercice 1-3 : Un jeune enfant qui ne sait pas lire prend les 6 jetons d'un jeu de Scrabble qui composaient le mot "CARTON". Il réaligne ces jetons au hasard. Avec quelle probabilité recompose-t-il ce mot ? Même question s'il a pris les 8 jetons qui composaient le mot "INSTITUT". Exercice 1-4 : 20 sujets sont au programme d'un oral d'examen. Le candidat tire au sort 3 de ces sujets et traite l'un de ces trois. Combien doit-il avoir révisé de sujets pour avoir au moins 9 chances sur 10 de pouvoir traiter un sujet qu'il a révisé ? Remarque sur le choix du modèle probabiliste Comme dans tout problème de modélisation, il n'y a pas d'automatisme qui permette d'associer un espace de probabilité à une expérience aléatoire "concrète". Même dans des 8 cas d'école, il n'y a jamais un seul "bon" choix : reprenons l'exemple de l'urne introduisant le paragraphe 2. Deux modèles peuvent être considérés comme naturels : - On peut distinguer les 12 boules contenues dans l'urne en posant : Ω = {B1, B2, N, V1, V2, V3, V4, uploads/Philosophie/ ch-2-denombrement-et-espace-de-probabilite.pdf
Documents similaires
-
17
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Apv 24, 2021
- Catégorie Philosophy / Philo...
- Langue French
- Taille du fichier 0.3973MB