HAL Id: tel-02062116 https://tel.archives-ouvertes.fr/tel-02062116 Submitted on
HAL Id: tel-02062116 https://tel.archives-ouvertes.fr/tel-02062116 Submitted on 8 Mar 2019 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Development and validation of a predictive model to ensure the long-term electromagnetic compatibility of embedded electronic systems Chaimae Ghfiri To cite this version: Chaimae Ghfiri. Development and validation of a predictive model to ensure the long-term electro- magnetic compatibility of embedded electronic systems. Electromagnetism. INSA de Toulouse, 2017. English. NNT : 2017ISAT0033. tel-02062116 En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Présentée et soutenue par : Titre : École doctorale et discipline ou spécialité : Unité de recherche : Directeur/trice(s) de Thèse : Jury : THÈSE le Imprimer le formulaire Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse) Chaimae GHFIRI mercredi 13 décembre 2017 Development and validation of a predictive model to ensure the long-term electromagnetic compatibility of embedded electronic systems ED GEET : Génie Electrique LAAS-CNRS Fabian VARGAS (Professeur, Catholic University - PUCRS) Rapporteur Bernd Deutschman (Professeur, Graz University of Technology) Rapporteur Geneviève Duchamp (Professeur, Université de Bordeaux - IMS Bordeaux) Examinatrice Marise Bafleur (Directrice de recherche LAAS-CNRS) Présidente du jury Frédéric Lafon (Expert CEM à Valéo) Examinateur André Durier (Chef de projet IRT Saint-Exupéry) Invité Sonia BEN DHIA (Maitre de conférence/HDR - INSA Toulouse, LAAS-CNRS) Alexandre BOYER (Maitre de conférence - INSA Toulouse, LAAS-CNRS) Acknowledgments First and foremost, I would like to express my sincere gratitude to my supervisors who guided me through these last three years and contributed in the achievement of this project. Special thanks to Alexandre Boyer for being my major advisor on various technical and scientific topics and for his availability throughout this period, thank you for your support, motivation and your professionalism. Also, I would like to thank my supervisor Sonia Ben Dhia who, despite her many responsibilities, managed to follow this project and gave me relevant advice and technical recommendations. And thank you to André Durier for his support and encouragement. I am also grateful to the IRT Saint-Exupéry administrative collaborators, Gilbert Casamatta and Ariel Sirat for allowing me to realize this project and the trust they had toward my skills. Thank you to Régine Sutra Orus for her openness and willingness to discuss and give professional and personal advice. And thank you to all the project members. Thank you to the Professors Fabian Vargas and Bernd Deutschmann for accepting to review this manuscript, the time they afford to do this and for being a part of the thesis committee. During this Ph.D. period, I was also supported by my colleagues Mustafa Zerarka, Samuel Pin, Siham Hairoud and Omar Chihani, to whom I would like to express my gratitude. Thank you to Alain Bensoussan who was my reference and my main advisor on the various aspects of reliability and who did not hesitate to share his experience and skills with me, thank you for your generosity. I also would like to thank Sebastien Serpaud for the technical support and the interesting discussions we have had. Thank you to Huang He for introducing me the EMC laboratory at INSA. I won’t forget the interns Nathan Prim, Manuel Gonzalez Sentis and Yevgeniy Nurseitov who have performed remarkable work in this project. Thank you to Olivier Crepel for the discussions and Christian Marot for the technical support. My excuses go to those I did not mention, I would like them to know that I really consider their support and for that I am sincerely grateful. And last but no means least, many thanks to my supporting club; my parents, my lovely siblings and fiancé for being there all along this period to provide me the emotional and moral assistance despite the long distance separating us. I am really grateful to my best friend Amine for his support and all my friends. My special gratitude goes to my uncle and second father Said Ghfiri to whom I owe realizing my project. Thank you to every member of my family. Abstract | i Abstract With the technological evolution of integrated circuits (ICs) through the transistors scaling, which leads to the multiplication of the number of transistors within a chip, the requirements in terms of emission and immunity levels become more restrictive in the aeronautic, space and automotive industries. Moreover, since the evolution of Electromagnetic Compatibility (EMC) levels of electronic equipment after aging must meet the EMC long-term robustness requirements, the EMC margins defined by the manufacturers are often overestimated and the filtering systems designed by the equipment manufacturer could be oversized. Therefore, for the integrated circuits dedicated to embedded applications, it is necessary to study the different aspects of EMC modeling as well as the reliability the modeling. These last years, several standards have been proposed for the construction of predictive EMC models such as ICEM-CE/RE (Integrated Circuit Emission Model for Conducted and Radiated Emission) and ICIM-CI (Integrated Circuit Immunity Model for Conducted Immunity). On the other hand, to integrate the effect of aging in EMC models, it is important to study the main intrinsic degradation mechanisms that accelerate the aging of ICs, such as HCI (Hot Carrier Injection), TDDB (Time Dependent Dielectric Breakdown), EM (Electromigration) and NBTI (Negative Bias Temperature Instability). For this purpose, there are existing models for the reliability prediction, such as the MIL-HDBK-217 standard and the FIDES standard. However, these models could take into account only the activation of one degradation mechanism. The combination of several degradation mechanisms could be critical for the IC performances and could contribute in the evolution of EMC level. This dissertation introduces the different aspects of EMC and reliability modeling. This work deals with the construction of a conducted emission model of an FPGA and the proposition of new modeling methodologies. Furthermore, the reliability of the tested FPGA is described using a new predictive model, which takes into account the activation of the different degradation mechanisms. The reliability model has been combined with the EMC model for the long-term conducted emission level prediction. Résumé | ii Résumé Avec l’avancement technologique des circuits intégrés à travers la miniaturisation des tailles des transistors et leur multiplication au sein d’une même puce, l’intégration des circuits dans des systèmes embarqués complexes, principalement dans l’industrie aéronautique, spatiale et automobile, rencontre de plus en plus d’exigences en termes de respect des niveaux d’émission et d’immunité. De plus, étant donné que l’évolution des niveaux de Compatibilité Electromagnétique (CEM) des équipements électroniques doit respecter ces exigences à long- terme, les marges définis par les industriels sont souvent surestimés et les systèmes de filtrages établis par les équipementiers peuvent être surdimensionnés. De ce fait, pour les circuits intégrés dédiés aux applications embarquées, il est nécessaire d’étudier les deux aspects qui concernent la modélisation CEM ainsi que la modélisation de la fiabilité. Ces dernières années, des standards ont été proposés et permettent la construction de modèles CEM prédictifs tel que ICEM-CE/RE (Integrated Circuit Emission Model for Conducted and Radiated Emission) et ICIM-CI (Integrated Circuit Immunity Model for Conducted Immunity). De plus, pour intégrer l’effet du vieillissement dans les modèles CEM, il faut étudier les principaux mécanismes de dégradation intrinsèques aux circuits intégrés qui accélèrent leur vieillissement tels que le HCI (Hot Carrier Injection), TDDB (Time Dependent Dielectric Breakdown), EM (Electromigration) et NBTI (Negative Bias Temperature Instability). Des modèles standardisés sont utilisés dans les différents domaines industriels qui permettent la construction de modèle de fiabilité tels que le standard MIL-HDBK-217 et le standard FIDES. Cependant, ils ne permettent de prendre en compte qu’un seul mécanisme de dégradation à la fois. Ce manuscrit de thèse introduit ces aspects de modélisation CEM et de fiabilité. Il traite également la construction d’un modèle d’émission conduite d’un FPGA avec la proposition de nouvelle méthodologie de modélisation. Ensuite, l’étude de la fiabilité du FPGA est décrite à travers l’utilisation d’un nouveau modèle permettant la prise en compte des différents mécanismes de dégradations et a été combiné au modèle CEM pour la prédiction des niveaux d’émissions conduite à long-terme. TABLE OF CONTENTS | I TABLE OF CONTENTS Abstract ............................................................................................................................................. i Résumé ............................................................................................................................................ ii TABLE OF CONTENTS ................................................................................................................. I LIST OF FIGURES ....................................................................................................................... IV LIST OF TABLES ........................................................................................................................ XI List of acronyms .......................................................................................................................... XIII General introduction ......................................................................................................................... 1 Thesis context ............................................................................................................................... 1 Scope of this dissertation .............................................................................................................. 3 References .................................................................................................................................... 5 Chapter I. Effect of ICs reliability issues on long-term electromagnetic robustness ....................... 6 1. Overview on EMC of integrated circuits ................................................................................. 6 1.1. Evolution of CMOS technology ........................................................................................ 6 1.2. Electromagnetic compatibility of integrated circuits for embedded applications ............. 9 2. Integrated circuits reliability issues ........................................................................................ 19 2.1. Introduction ..................................................................................................................... 19 2.2. Impact of technology scaling on the long-term uploads/Science et Technologie/ 2017-ghfirichaimae.pdf
Documents similaires
-
10
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Nov 09, 2022
- Catégorie Science & technolo...
- Langue French
- Taille du fichier 48.2209MB