Nº ordre : 2272 Année 2005 Thèse préparée au Laboratoire d'Electrotechnique et

Nº ordre : 2272 Année 2005 Thèse préparée au Laboratoire d'Electrotechnique et d'Electronique Industrielle de l'ENSEEIHT Unité Mixte de Recherche N° 5828 au CNRS THESE Présentée pour obtenir le titre de DOCTEUR DE L’INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE Spécialité : Génie Electrique Par Silverio ALVAREZ HIDALGO Ingénieur ENSEEIHT – DEA Génie électrique Characterisation of 3.3kV IGCTs for Medium Power Applications Soutenue le 3 novembre 2005 devant le jury composé de: MM. G. COQUERY Président J. R. TORREALDAY Rapporteur F. LABRIQUE Rapporteur E. CARROLL H. CARON P. LADOUX 1 Abstract The Low Voltage IGCT (3.3kV) is developed to provide a semiconductor able to work at high switching frequencies (>1kHz), preserving its “high current” capacity (4kA). The ultimate goal is to increase the dynamic performances of medium/high power converters, thus extending their application field. To characterise the experimental samples of 3.3kV IGCTs, an opposition method based test bench was developed. This method allows the components to be evaluated at different test conditions in real operation without the need of several megawatt power supplies. Once the samples were characterised, the applicability analysis of these components on specific applications related to the French railway network (SNCF) is performed. Finally, a reactive power compensation application for single-phase systems is studied in detail and a 100kVAR IGCT based set up is built. Keywords • 3.3 kV IGCT • Medium Voltage • Medium Power • Opposition Method • STATCOM • AC Chopper Résumé Le développement des IGCT Basse Tension (3,3kV) vise un composant capable de travailler à fréquence élevée (>1 kHz) tout en gardant sa capacité "fort courant" (4kA). L’objectif final est d’augmenter les performances dynamiques des convertisseurs moyenne/forte puissance et d’étendre ainsi leur champ d’application. Pour la caractérisation des échantillons expérimentaux des IGCT 3,3kV, un banc d’essais basé sur une méthode d’opposition a été développé. Cette méthode permet l’évaluation des composants sous différentes conditions d’essai en mode de fonctionnement réel sans nécessité de sources d’alimentation de plusieurs MW. Une fois les échantillons caractérisés, l’analyse de l’applicabilité de ces composants dans des applications spécifiques aux réseaux ferroviaires SNCF est abordée. Finalement, une application de compensation de puissance réactive pour des réseaux monophasés a été étudiée en détail et une maquette de 100kVAR à base de IGCTs a été réalisée. Mots Clefs • IGCT 3.3kV • Moyenne Tension • Moyenne Puissance • Méthode d’opposition • Compensateur Statique • Gradateur MLI 2 Resumen Los IGCT de Baja Tensión (3.3kV) se desarrollan para proporcionar un componente capaz de trabajar a frecuencia elevada (>1kHz) manteniendo su capacidad de “alta corriente” (4kA). El objetivo final es aumentar las prestaciones dinámicas de los convertidores de media/alta potencia y ampliar así su campo de aplicación. Para caracterizar la muestras experimentales de IGCTs 3.3kV, se ha desarrollado un banco de ensayo basado en el método de oposición. Este método permite evaluar los componentes bajo diferentes condiciones de ensayo en modo de funcionamiento real sin necesidad de fuentes de alimentación de varios megavatios. Una vez que las muestras han sido caracterizadas, se aborda el análisis de la aplicabilidad de estos componentes en aplicaciones específicas relacionadas con la red ferroviaria Francesa (SNCF). Finalmente, se estudia en detalle una aplicación de compensación de potencia reactiva para redes monofásicas y se realiza una maqueta de 100kVAR con IGCTs. Palabras Clave • IGCT 3.3 kV • Media Tensión • Media Potencia • Método de oposición • STATCOM • Chopper AC 3 Acknowledgements The work presented in this dissertation was carried out in the Static Converters research group of the Laboratoire d’Electrotechnique et d’Electronique Industrielle, LEEI (INPT-ENSEEIHT-CNRS). This work takes place as part of a collaboration contract between the LEEI and ABB Switzerland Ltd. Semiconductors. After three and a half years of research work, I would like to first thank Mr. Y. Cheron, director of the LEEI, for accepting me to the laboratory. Next, I would like to express my gratitude to the advisory committee members of my PhD thesis: • Mr. Gérard COQUERY, research manager of the New Technologies Laboratory (LTN) at the French National Institute for Transport and Safety Research (INRETS), for accepting to be part of my PhD advisory committee. • Mr. José Ramón TORREALDAY, Professor and department head of the Industrial Electronics department of the Polytechnic High School at the University of Mondragon (EPS-MU), Spain. It is an honour to have you as reviewer of my dissertation and I would like to express my sincere appreciation to you not only as an exceptional schoolmaster, but also for your personable skills. • Mr. Francis LABRIQUE, Professor and head of the Electrotechnical and Instrumentation Laboratory (LEI) of the Applied Science Faculty at the Catholic University of Louvain (FSA-UCL), Belgium, for the interest shown about my work and accepting to be a reviewer of my dissertation. • Mr. Eric CARROLL, Marketing Manager of ABB Switzerland Ltd. Semiconductors, for his support as one of the main driving forces of this work, for his always much appreciated comments and for being part of my PhD advisory committee. • Mr. Hervé CARON, Engineer of the Department of Fixed Installations for Electric Traction (IGTE) at the French National Railway Company (SNCF), for his collaboration to this study from the industrial point of view and his participation as a committee member. • Mr. Philippe LADOUX, Professor at the Engineering National High School ENSEEIHT of the Polytechnic National Institute of Toulouse (INPT), head of “Static Converters” research group at the LEEI and supervisor of this PhD. I would like to express my sincere gratitude for his wise guidance and support, encouragement and trust in me. It has been an honour and pleasure to work and share many very good moments with you. Thank you very much for your friendship. Throughout the development of my PhD, I have had the opportunity to take part of three different communities. For the first two and a half years, I shared my time between the LEEI in Toulouse, France and CIDAE (Power Engineering and Electrotechnologies Research Centre of the Mondragon University) in Mondragon, Spain, under the frame of a research collaboration established between both institutions. The last year, I had the opportunity to finish my PhD as an internship student in the ABB Corporate Research Centre in Baden-Dättwil, Switzerland. I would Acknowledgements 4 like to thank all these institutions for the support to successfully finish my PhD. I would also like to express my gratitude to the very nice and friendly people that made my work and life more interesting and easier during these years. In some way, this PhD is also yours. In Mondragon, I would like to especially render thanks to Professor Mikel Sanzberro for his teaching and personable skills that stimulated my enthusiasm for power electronics. I will not forget all the highly valued colleagues (professors, lecturers, assistants, students, etc.) that first suffered my stay in the “Vehículo Eléctrico” office and then in “GARAIA”: Jose Maria Canales (our “Channels”), Jonan Barrena (“mi Jonan”), Xabi Agirre (I loved when we were flying together to Barcelona), Miguel Rodriguez (“del mundo mundial”), Gonzalo Abad, Gaizka Almandoz, Josu Galarza (“you are the next”), Estanis Oyarbide, Sergio Aurtenetxe, Iñigo Garin (“do not annoy too much the “abuelo””), Alex Munduate, Agurtzane Aguirre (“I still owe you a “lomo” from Extremadura, but at least you had some sweet Swiss chocolate”), Raul Reyero, Ion Etxeberria and his “ladies” Maider, Haizea, Amaia and Elsa, and many others. We had very good times together. I will always remember you all. In Toulouse, again, I would like to mention many people that I really appreciate. Amongst them, I firstly want to give thanks to Professor Henri Foch for his masterful lessons in Power Electronics, which made me love this topic. I also want to express my gratitude to the professors and researchers of the LEEI-ENSEEIHT for their excellent contribution to my formation, such as Maria Pietrzak-David, Michel Metz, Frederic Richardeau, Thierry Meynard, Henri Schneider, etc. Special thoughts also go to the mates of the LEEI 102 office during my first training period at the LEEI: Bruno Sareni (“the atypical French guy that does not like cheese, wine or bread, but loves cooking, (you know that I am always ready to try your experiments) and is an extremely good cards player”), Fernando Iturriz and Philippe Baudesson, all of them exemplary researchers and very friendly people. With all of them, a very special link to the LEEI was built on me. This link has been reinforced even more during my PhD thanks to many other people like Philippe Ladoux (the most famous jokester of the LEEI), Jean Marc Blaquiere (“we had a very good time playing with the 3MW toy we built, having long talks and doing some hiking in the Pyrenees”), Stephan Caux (“the LEEI most gourmand guy, who should ask Bruno for his dessert recipe book”), Didier Ginibriere and many other PhD students (Paul Etienne Vidal, Gianluca Postiglione, Herve Feral, Guillaume Fontes, Grace Gandanegara, Christoph Conilh, Wojciech Szlabowicz, Ali Ali Abdallah, Bayran Tounsi, Frederic Alvarez, etc.). I would like to also thank the administrative staff (Mesdames Bodden, Pionnie, uploads/Science et Technologie/ ee 1 .pdf

  • 19
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager