METABOLISME ET NUTRITION BACTERIENS I. Introduction Pour assurer sa croissance
METABOLISME ET NUTRITION BACTERIENS I. Introduction Pour assurer sa croissance ou sa survie, une bactérie doit trouver dans son environnement de quoi satisfaire ses besoins nutritifs: sources d'énergie, de carbone, d'azote, etc... Ces éléments doivent être apportés dans un milieu où règnent des conditions physico- chimiques favorables (température, pH, pression osmotique, etc...). Le métabolisme est l'ensemble des réactions biochimiques mises en jeu par un organisme pour permettre sa croissance (figure 1). Les réactions métaboliques peuvent être classées en deux catégories: - celles qui produisent de l'énergie: catabolisme. - celles qui consomment de l'énergie: anabolisme ou biosynthèse. Figure 1 : Représentation schématique simplifiée montrant la relation entre le catabolisme et l’anabolisme II. Métabolisme énergétique et types respiratoires II.1. Métabolisme énergétique Une bactérie, pour qu'elle puisse synthétiser ses constituants et se déplacer, doit dépenser de l'énergie. Cette énergie est procurée soit par photosynthèse (cas des bactéries photosynthétiques) soit par des réactions biochimiques d'oxydoréduction. On définit alors deux types trophiques: - énergie lumineuse ____→ phototrophie. - énergie chimique ____→ chimiotrophie. Cette énergie est stockée dans des liaisons chimiques comme l’ATP (Adénosine triphosphate; figure 2). Figure 2 : Structure de l'ATP Energie ATP ← ADP + Pi (PO4 3-) La bactérie, quand elle a besoin d'énergie, utilise l'ATP → ADP + Pi (PO4 3-) + Energie II.1.1. Phototrophie (tableau 1) * Chez les plantes, la photosynthèse peut se résumer ainsi : Lumière CO2 + H2O → (CH2O) + O2 H2O est le donneur d'électrons. La photosynthèse a lieu au niveau des chloroplastes grâce aux pigments chlorophylliens. * Chez les bactéries photosynthétiques, il n'existe pas de chloroplastes; la bactériochlorophylle est dispersée dans le cytoplasme sous forme de chromatophores. On peut résumer leur photosynthèse comme suit: Lumière CO2 + 2RH2 → (CH2O) + 2R + H2O RH2 est le donneur d'électrons. Chez les bactéries, le donneur d'électrons n'est jamais H2O ; sa nature chimique permet de distinguer deux types trophiques. Il peut être: - minéral → photolithotrophie - organique → photoorganotrophie Tableau 1 : Comparaison entre la photosynthèse chez les organismes eucaryotes et chez les bactéries* Eucaryotes Bactéries Organismes plantes, algues bactéries vertes et pourpres Type de chlorophylle chlorophylle a absorbe à 650- 750nm bactériochlorophylle absorbe à 800-1000nm Photosystème I (photophosphorylation cyclique) présente présente Photosystème II (photophosphorylation non cyclique) présente absente Production de O2 oui non donneur d’électrons H2O H2S, autres composés soufrés ou certains composés organiques * les cyanobactéries possèdent la photosynthèse des plantes supérieures Pendant la photosynthèse, deux types de réactions ont lieu (figure 3): - l'énergie lumineuse est absorbée par les pigments chlorophylliens, puis transformée en énergie de liaison (ATP) grâce à un système de transfert des électrons (light reaction). - réactions de biosynthèse (dark reaction) pendant lesquelles l'énergie stockée sous forme d'ATP est utilisée pour les biosynthèses bactériennes effectuées à partir du CO2 (ou de composés organiques). Figure 3 : Schéma montrant le couplage des réactions de photosynthèse pmf: proton motive force; H2A: donneur externe d'électrons; X: ferredoxine II.1.1.1. Photolithotrophes Elles sont anaérobies strictes et utilisent les sulfures ou H2 comme donneurs d'électrons. L'oxydation des sulfures produit des grains de soufre qu'on trouve dans le cytoplasme bactérien. On rencontre deux familles: - Chlorobacteriaceae (bactéries vertes sulfureuses) - Thiorodaceae (bactéries pourpres sulfureuses). II.1.1.2. Photoorganotrophes - Athiorodaceae (bactéries pourpres non sulfureuses). Elles utilisent, comme leur nom l'indique, des substrats organiques comme donneurs d'électrons. Dans la plupart des cas, la photosynthèse n'est pas obligatoire; à l'obscurité, les bactéries deviennent chimioorganotrophes. II.1.2. Chimiotrophie La majorité des bactéries rencontrées dans la nature sont dépourvues de pigments chlorophylliens et sont par conséquent incapables de faire la photosynthèse. Elles doivent donc se procurer de l'énergie à partir de réactions chimiques d'oxydoréduction. L'ATP est produit lors de deux types de réactions de phosphorylation. II.1.2.1. Phosphorylation au niveau du substrat (figure 4) Figure 4 : Exemples de réactions de phosphorylation au niveau du substrat rencontrées chez les bactéries II.1.2.2. Phosphorylation oxydative (chaîne de transfert des électrons) La chaîne de transfert des électrons, encore appelée chaîne respiratoire, à laquelle sont associées les phosphorylations oxydatives, a une structure très complexe comparable à celles des cellules eucaryotes mais il existe des différences notables d'une bactérie à l'autre (voir exemples ci-dessous). En admettant, pour simplifier, que le seul transporteur soluble d'électrons au cours du métabolisme respiratoire soit le NAD+, l'oxydation complète du glucose par la voie aérobie du cycle tricarboxylique correspond à la réaction globale suivante: C6H12O6 + 6H2O + 12NAD+ → 6CO2 + 12NADH + 12 H+ La chaîne respiratoire intervient pour réoxyder les coenzymes réduits: 12NADH + 12H+ + 6O2 → 12NAD+ + 12H2O Figure 5 : Représentation schématique de la chaîne respiratoire chez les bactéries AH2 : Donneur d'électrons (substrat énergétique) A : Donneur oxydé B : Accepteur final d'électrons Les transporteurs intermédiaires (X, Y et Z) peuvent être des co-enzymes (tableau1) tels que NAD, FAD, FMN ou des cytochromes. En fonction de la nature du donneur, on définit deux types trophiques: - donneur minéral → chimiolithotrophie - donneur organique → chimioorganotrophie II.2. Types respiratoires des chimiotrophes II.2.1. Respiration La respiration est l'ensemble des réactions biochimiques d'oxydation procurant à l'organisme l'énergie nécessaire à ses biosynthèses essentiellement grâce à des phosphorylations oxydatives membranaires (chaîne de transfert des électrons). On distingue deux types de réactions en fonction de la nature chimique de l'accepteur final (figure 5, tableau 2): - accepteur = O2 → respiration aérobie - accepteur ≠ O2 → respiration anaérobie; l'accepteur peut être minéral (nitrates, sulfates, gaz carbonique) ou organique (ex: fumarate) Tableau 2 : Différents accepteurs d’électrons utilisés lors de la respiration chez les bactéries Accepteur d’électrons Produit final réduit Nom du processus Exemples de microorganismes O2 H2O Respiration aérobie Escherichia coli, Streptomyces NO3 - NO2 -, NH3 or N2 Respiration anaérobie (dénitrification) Bacillus, Pseudomonas SO4 -- S or H2S Respiration anaérobie (réduction des sulfates) Desulfovibrio fumarate Succinate Respiration anaérobie utilisant un accepteur d’e- organique Escherichia coli CO2 CH4 Méthanogenèse Methanococcus Exemples de chaînes respiratoires rencontrées chez les bactéries 1 )Respiration aérobie chez les bactéries oxydase+ 2) Respiration aérobie chez les bactéries oxydase- 3) Respiration anaérobie (nitrate comme accepteur final) II.2.2. Fermentation La fermentation est l'ensemble des réactions biochimiques d'oxydation qui fournissent à l'organisme de l'énergie grâce à des phosphorylations non couplées aux processus membranaires, mais ayant lieu uniquement dans le cytoplasme, au niveau du substrat. La production d'énergie, par fermentation, est impossible chez les bactéries aérobies strictes. En aérobiose, seules les bactéries anaérobies facultatives aérotolérantes peuvent produire de l'énergie par fermentation; chez les bactéries anaérobies strictes et aéro- anaérobies facultatives les voies fermentatives sont réprimées en aérobiose (effet inhibiteur de l'oxygène). La fermentation du glucose, par exemple, se fait en deux étapes: - une première série de réactions aboutissant à l'oxydation du glucose en un composé intermédiaire (acide pyruvique); - une seconde série conduit à un ou plusieurs produits finals (acide lactique, acétate, éthanol, etc...). L'énergie produite par fermentation est nettement inférieure à celle procurée par respiration. Exemple: l'oxydation complète du glucose en CO2 et H2O, par respiration aérobie, produit 674 kcal; alors que sa fermentation en acide lactique ne produit que 22,5 kcal. Ceci explique le faible rendement de croissance obtenu en anaérobiose, comparé à celui obtenu au cours des processus respiratoires. III. Source de carbone Certaines bactéries peuvent utiliser le gaz carbonique de l'air ou ses sels (carbonates) comme seule source de carbone; elles sont dites autotrophes. Elles sont donc capables de synthétiser la matière organique à partir de cette source minérale. Parmi ces bactéries, on distingue: - les autotrophes strictes qui exigent le CO2 comme source de carbone unique - les autotrophes facultatives qui peuvent utiliser le CO2 et le carbone organique. Pour la majorité des bactéries, la source de carbone est organique; elles sont dites hétérotrophes. Parmi ces bactéries on distingue: - celles qui sont capables de se développer en présence d'une seule source de carbone organique (glucose par exemple); elles sont appelées prototrophes. A partir de cette source, elles sont capables de synthétiser tout ce dont elles ont besoin comme substance organique. - d'autres bactéries, notamment parmi les souches parasites, sont incapables de synthétiser certaines substances indispensables à leur croissance (facteurs de croissance) à partir de la seule source de carbone organique fournie; il faut donc les leur apporter dans le milieu; elles sont dites auxotrophes. Les facteurs de croissance regroupent les acides aminés, les vitamines et les bases azotées (purines et pyrimidines). Tableau 3 : Exemples de vitamines utilisées par les bactéries Vitamine Forme du coenzyme Fonction Biotine Biotine Réactions de biosynthèse qui demandent la fixation du CO2 Acide nicotinique NAD (nicotinamide adénine dinucléotide) et NADP Transporteurs d’e- dans les réactions de déshydrogénation Pyridoxine (B6) Pyridoxal phosphate Transamination, désamination, décarboxylation des aminoacides Riboflavine (B2) FMN (flavine mononucléotide) et FAD (flavine adénine dinucléotide) Réactions d’oxydoréduction Vitamine K Quinones et napthoquinones Processus de transport d’électrons Les AA sont essentielles pour la synthèse des protéines, les vitamines pour les co- enzymes (Tableau 3) et les bases azotées pour les acides nucléiques. Les bactéries prototrophes sont capables de croître dans un milieu minimum contenant une seule source de carbone (glucose en général), une source d'azote et des sels uploads/Finance/ metabolisme-et-nutrition-bacteriens.pdf
Documents similaires
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/O09Php3mAY184DGcDg4dpbuM4YiBFOWDDc96Q464hnRuhGqhud846IiOIvnBVvYiLTPDoDIc1x416SC8zWzmc904.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/Gebnjy5zlN9A9KssVAib15z4Kmd2eAzJuYEKTGE5NM3h4csJ97BDoVzMLs39IJ3VnKofErQDsdPWQ3T8qgIWSUgJ.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/0zFoWCEulXVdU11uDZDZPETnwAqHB40d059aR5X6EtBaTmXXbHkr4xA7xFSdQNSwxGECOla8SR5f1Va6YQzLB6Xo.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/hC55sBRuOg3Vn978kJoskvUGF3vPiushOmpmemXh1d4EZvbg1potCr17LA0X8aDA01sX7WLemm2qOIYJpVN2wMvI.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/1rQg4wqPTnPqM1Q6SJdfb1M3zaZkucGt6pbN0bLRmb9Q4dhqa1SrhNLYNy6WKq5xapFFdFHK98P4kBVhyyqQHrvO.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/o5DM0qDWc3a78A39ZhUsWBNa14PnFLzHh5krOffbk15MQZTHKyncmUlD9BTtk4E1PaJYZMfvIw0racepX71HGtFY.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/RQd1Xx15qv1QmIedBHd9HPJK6Z1WNf3AUxCTjFD15fYs6MoTmbS3gK5l3Mh1rYufl1ojFH8aamM53MAgKLxcEutw.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/TeRsr2368tjejFRffAcj40oFASU05a4QVJJ2XfeIOTIHYs4RhzcbRCyiMpGJHFqbSDMlehNMwkSibU6kobl9oz5u.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/iHIjekFcg8g28B5iT7J4ScYf3IbE8xffjkVqZwU44oNCAk1ctN5pZRRm3Ufbrub4M1P3U83jWVoriXzljJK3DGCF.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/MuU1jE63TBa9bNmnEuqiN4zi5YqYL1JEha75eW86PYXpWMHm5AYZpRfrOPKDQw1US4EcMY6wFwsgNDD7QwUKErmH.png)
-
19
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Aoû 25, 2022
- Catégorie Business / Finance
- Langue French
- Taille du fichier 1.3992MB