147 Chapitre 11. L’ÉNERGIE MÉCANIQUE « Aucun corps ne se met en mouvement ou re
147 Chapitre 11. L’ÉNERGIE MÉCANIQUE « Aucun corps ne se met en mouvement ou revient au repos par lui-même » Ibn SINA (connu en Occident sous le nom d’AVICENNE), médecin et philosophe iranien (980 – 1037). Vous avez compris depuis plus de 100 pages que la réflexion menée dans ce « traité de biomécanique du cyclisme » n’est pas celle d’un physicien, mais celle d’un médecin ayant quelques prétentions en anatomie, en physiologie et connaissant par la théorie, l’expérience clinique et la pratique personnelle certains gestes sportifs, notamment ceux des cyclistes. Les définitions ou remarques proposées ne sont pas celles qu’aurait pu donner ou faire Richard Phillips FEYNMAN, prix Nobel de physique en 1965. Ce sont celles d’un pratiquant sybarite, séduit par l’intelligence et la pédagogie de ce physicien et qui aimerait partager le plaisir qu’il a de pédaler et de com- prendre ce qu’il fait. Les notions développées se satisfont d’être sommaires. L’important est de savoir com- ment elles sont entrées dans le capital intelligent de l’humanité et pourquoi elles peuvent mener à une bonne appréhension du geste cycliste. 11.1. DÉFINITIONS 11.1.1. L’ÉNERGIE Citons justement R. P. FEYNMANN : « Dans la physique d’aujourd’hui, nous n’avons aucune connaissance de ce qu’est l’énergie ». Nous voilà bien partis ! Ce que l’on peut tout de même affirmer, c’est qu’il s’agit d’une caractéristique de l’état d’un système. L’énergie est une propriété de toute matière et l’on ne peut l’observer qu’indirectement par des variations de position, de masse, de vitesse… L’énergie se quantif ie en joules ou en calorie, nous y reviendrons à propos du travail, ci-dessous. Elle apparaît sous un très grand nombre de formes différentes. Citons quelques exemples. - L’énergie potentielle gravitationnelle est liée au poids. Elle est, par exemple, gênante dans la montée d’un col mais tout à fait plaisante dans la descente. - L’énergie cinétique est liée au mouvement. Elle nous oblige à freiner, par exemple. - L’énergie mécanique est la somme de l’énergie potentielle gravitationnelle et de l’énergie cinétique. - L’énergie thermique est produite, par exemple, par le frot- tement des freins sur les jantes, par les frottements des pneus avec la route, par les frottements avec l’air ou par (le mauvais rendement de) la combustion des aliments dans notre organisme. - L’énergie élastique est celle de nos pneus, qui amortissent les chocs et les vibrations venant de la route, celle des ressorts des dérailleurs et des freins, ou celle des muscles. Elle joue un rôle important chez le cycliste, nous en reparlerons à la fin de ce chapitre - L’énergie électrique est fournie par des piles ou par l’alternateur sous la boîte de pédalier. - L’énergie chimique est, par exemple, procurée par les mécanismes biochimiques de la digestion. - L’énergie de rayonnement est, par exemple, un des moyens de dissipation de la chaleur en excédant lors de l’effort sportif, ou la cause de la chaleur fournie par le soleil sur notre peau. - L’énergie nucléaire n’est pas encore utilisée par les cyclistes sauf pour alimenter en électricité certains outils nécessaires à l’entretien de la bicyclette. - L’énergie de masse a été mise en évidence par Albert EINSTEIN et son épouse, en 1905. Tout le monde connaît sa célèbre formule E = m.c . Toute particule de masse m possède, au repos, une énergie E égale à 2 m multipliée par le carré de la vitesse de la lumière dans le vide. Un objet a de l’énergie du fait de sa simple existence. 148 L’énergie de masse de la randonneuse de Maurice est de 11,5 kg ´ (3.10 ) 8 2 = 34,5.1016 J. C’est une véritable méga-bombe ! C’est même l’équivalent de 3.500 bombes comme celle d’Hiroshima ! 11.1.2. LE TRAVAIL Le travail est la variation de l’énergie d’un système due à l’application d’une force, agissant sur une distance. En mécanique, il s’agit donc d’un mouvement s’exerçant contre une résistance, que celle-ci soit la pesanteur, un frottement, l’inertie… Travail = Force ´´ ´ ´distance L’unité de travail est le newton-mètre (N.m) ou le joule (J) qui correspond à une force de 1 newton déplaçant un corps de 1 mètre. On utilise fréquemment une autre unité, la calorie. Une calorie est égale à 4,186 joules et 1 kilocalorie est donc égal à 4.186 joules. Sur route plate, à vitesse constante, la résistance est liée aux seuls frottements. Nous reverrons tout cela au chapitre 12. En attendant, prenons un exemple. La route qui longe, pendant 16 km, le canal de Caen à la mer est plate. Mais Maurice est bien obligé d’appuyer sur les pédales pour avancer. À 22,5 km/h, sans vent, la force de résistance, liée aux seuls frottements, est de 16 newtons. Le travail effectué de Caen à la mer est donc égal à quelques 256.000 joules. C’est l’équivalent de l’énergie fournie par la combustion de près de 250 allumettes. En montagne, dans la grimpée d’un col, ou dans la simple montée d’une côte dans le Perche, la force de ré- sistance cumule les effets de la pesanteur et, beaucoup plus accessoirement, des frottements (chapitre 12). Maurice hisse carcasse, randonneuse et sacoche de guidon, de Bédoin au sommet du Ventoux. Travail contre la pesanteur = masse totale (86 kg) ´ 9,81 ´ dénivelée (1.634 m) = 1.378.540 J. Travail contre les frottements = 133.600 J. Au total, le Ventoux depuis Bédoin « coûte » à Maurice 1.512.140 J, soit 361 kcal. Soit l’équivalent, en énergie, de l’explosion d’environ 1,5 kg de TNT ! 11.1.3. LA PUISSANCE La puissance correspond à la cadence du travail effectué ou plus généralement à la cadence à laquelle l’énergie est transformée d’une forme à une autre, ou transférée d’un système à un autre. C’est un débit d’énergie. On peut l’exprimer selon la formule : Puissance = Travail effectué / intervalle de temps La puissance P s’exprime en watt (w). Un watt = un joule / seconde. Il est un autre moyen de calculer la puissance. Il s’agit d’un travail effectué par intervalle de temps, c’est à dire d’une force qui s’exerce sur une distance, pendant un temps donné, soit à une certaine vitesse. On peut donc utiliser la formule suivante : Puissance = Force ´´ ´ ´vitesse De Caen à la mer, à 22,5 km/h, il faut à Maurice 42 minutes et 40 secondes. Il fournit donc une puissance de 100 watts (256.000 J / 2.560 s). Quand Maurice grimpe le Ventoux en deux heures et trente minutes, il fournit une puissance de 168 watts (1.512.140 J / 9.000 s). S’il prend son temps et réalise son escalade en trois heures, il ne fournit plus que 140 watts (1.512.140 J / 10.800 s), ce qui n’est déjà pas si mal. À l’entraînement, Kevin grimpe le Ventoux depuis Bédoin en une heure et quart. Avec ses 75 kg, vélo compris, il a effectué un travail de 1.397.250 joules (dont 195.034 en frotte- ments) et développé une puissance de 310 watts. 149 Pour situer les choses, prenons un autre exemple très quotidien : Maurice monte tranquillement les trois étages qui le mènent à son appartement (7,5 m de dénivellée). Travail effectué = 70 kg ´ 9,81 ´ 7,5 m = 5.150 J. En 30 secondes, il est devant sa porte. Puissance développée = 5.150 / 30 = 172 w. Il a oublié sa clé de voiture et remonte, quatre à quatre, en 13 s. Puissance développée = 396 w. Mais il est essoufflé et n’aurait pas tenu plus des trois étages. 11.1.4. CONSERVATION DE L’ÉNERGIE Henri POINCARE : « Comme nous ne pouvons pas donner une définition générale de l’énergie, le principe de conservation de l’énergie veut dire simplement qu’il y a quelque chose qui reste constant. Quelles que soient les nouvelles notions que des expériences futures peuvent nous donner, nous savons d’avance qu’il y aura toujours quelque chose qui reste constant et que nous pourrons appeler énergie ». C’est une loi de la nature, un fait. Il n’y a pas d’exception connue à cette « loi de conservation de l’énergie ». Il y a une certaine quantité que nous appelons énergie, qui ne change pas dans les multiples modifications que peut subir la nature. L’énergie totale de tout système isolé du reste de l’Univers reste constante, mais l’énergie peut être transformée d’une forme à une autre à l’intérieur du système. Ainsi, le cycliste produit de l’énergie par les mécanismes chimiques de son métabo- lisme et par la mise en jeu de son appareil locomoteur. Cette énergie libérée se transforme en énergie poten- tielle et/ou en énergie cinétique qui permettent de lutter contre la force gravitationnelle et les frottements. Pour l’instant, attachons-nous à ces deux énergies, qui défi- nissent l’énergie mécanique. Nous examinerons le pro- blème des frottements dans le chapitre 12. 11.2. L’ÉNERGIE POTENTIELLE GRAVITATIONNELLE Maurice range une bouteille dans un placard situé au-dessus de l’endroit où est posé son vélo. La bouteille glisse de ses mains et vient atterrir sur le garde-boue arrière de la randonneuse. Bouteille éclatée, vin perdu, garde-boue cabossé. L’énergie nécessaire pour faire éclater la bouteille et déformer uploads/Geographie/ 3-11-energie.pdf
Documents similaires
-
25
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Jui 24, 2021
- Catégorie Geography / Geogra...
- Langue French
- Taille du fichier 0.3963MB