2e BC 3 Induction électromagnétique 21 Chapitre 3: Induction électromagnétique

2e BC 3 Induction électromagnétique 21 Chapitre 3: Induction électromagnétique 1. Mise en évidence du phénomène : expériences fondamentales a) Expérience 1 1. Introduisons un aimant dans une bobine connectée à un galvanomètre (= ampèremètre sensible à cadre mobile, dont l'aiguille dévie soit vers la droite soit vers la gauche selon le sens du courant). Observation : Un courant circule dans la bobine pendant la durée du mouvement de l'aimant. 2. Retirons l'aimant. Observation : Le courant circule dans le sens opposé. 3. Maintenons l'aimant immobile dans la bobine. Observation : Rien ne se passe. 4. Maintenons l'aimant fixe et approchons la bobine. Observation : comme sub 1. 5. Maintenons l'aimant toujours immobile, et éloignons la bobine. Observation : comme sub 2. b) Terminologie Le phénomène observé s'appelle induction électromagnétique. Le courant observé s'appelle courant induit. Son intensité, généralement variable dans le temps, est notée "i". La bobine dans laquelle le courant induit circule est la bobine induite. De même que tout courant est dû à une tension, le courant induit est dû à une tension induite appelée force électromotrice induite ou f. é. m. induite. On la note "e". 2e BC 3 Induction électromagnétique 22 c) Expérience 2 1. On place une boucle formée par un fil conducteur et reliée à un galvanomètre dans le champ magnétique d'un aimant en U. Initialement la boucle est aplatie de sorte que la surface traversée par les lignes de champ est faible. Etirons cette boucle pour que la surface traversée par les lignes de champ s'agrandisse. Observation : Un courant induit circule dans la boucle pendant la durée où la boucle s'agrandit. 2. Comprimons la boucle afin de réduire la surface traversée par les lignes de champ. Observation : Le courant induit circule dans le sens opposé. d) Expérience 3 Plaçons un aimant horizontal, mobile autour d'un axe vertical, près d'une bobine d'axe horizontal, connectée à un galvanomètre. Faisons tourner cet aimant à vitesse angulaire constante. Observation : Un courant induit circule dans la bobine dans un sens, puis dans l'autre, puis de nouveau dans le premier sens, et ainsi de suite : la bobine est parcourue par un courant alternatif de fréquence égale à celle du mouvement de rotation. On fait la même observation si l'aimant est fixe et que la bobine tourne à vitesse angulaire constante. 2e BC 3 Induction électromagnétique 23 e) Conclusion On observe l'apparition d'un courant induit dans un circuit fermé si : 1) l'intensité ou la direction d'un champ magnétique à travers ce circuit varie ; 2) la surface délimitée par le circuit traversé par le champ varie. Si le circuit est ouvert une f. é. m. (tension) apparaît aux bornes du circuit. 2. Flux magnétique a) Notion intuitive La conclusion précédente nous suggère que le phénomène de l'induction électromagnétique se manifeste dans un circuit dès que le nombre de lignes de champ à travers ce circuit varie. Les physiciens ont défini une grandeur physique appelée flux magnétique  qui est justement une mesure du nombre de lignes de champ passant à travers un circuit. Comme B est une mesure de la densité des lignes de champ,  est proportionnel à B et à S. Si la surface S est disposée perpendiculairement aux lignes de champ, alors  = BS (constante de proportionnalité égale à 1, ce qui définit l'unité de ). Si la surface n'est pas perpendiculaire aux lignes de champ, alors  < BS ! Afin d'exprimer ce flux, les physiciens définissent le vecteur surface S  . b) Définition du vecteur surface Tout d'abord on choisit un sens positif pour le contour de la surface. Les caractéristiques du vecteur surface S  sont : * point d'application : le centre de la surface * direction : perpendiculaire à la surface * sens : déterminé par la règle de la main droite : les doigts courbés indiquent le sens + et le pouce indique le sens de S  * norme : la valeur S de la surface (en m2) 2e BC 3 Induction électromagnétique 24 c) Définition du flux magnétique 1. S  parallèle à B  : BS   2. Angle  quelconque entre S  et B  :  à travers S =  à travers S' = BS' = BS cos= S B    3. S  perpendiculaire à B  : 0   car aucune ligne de champ ne traverse S ! On voit aisément que la relation trouvée sub 2 vaut aussi dans les cas 1 et 3. Finalement, le flux d'un champ magnétique B  à travers une surface S  est défini par le produit scalaire de B  par S  :      cos BS S B   Si la surface est délimitée par un circuit bobiné comportant N spires, la surface totale vaut N fois la surface d'une spire, et :      cos NBS S B N   (S  est toujours le vecteur surface d'une seule spire !) 2e BC 3 Induction électromagnétique 25 d) Unité S.I. : le weber (Wb) S  parallèle à B  : BS   Si B = 1 T et S = 1 m2 alors  = 1 Tm2 = 1 weber = 1 Wb 1 mWb = 10-3 Wb etc. e) Apparition du phénomène de l'induction électromagnétique [Conclusion 1. e)] Le phénomène de l'induction électromagnétique apparaît dans un circuit électrique si le flux magnétique à travers ce circuit varie ! Si le circuit est ouvert le phénomène se manifeste par une f.é.m. apparaissant aux bornes du circuit. Si le circuit est fermé, il se manifeste par un courant induit circulant dans le circuit. 3. Sens du courant induit: Loi de Lenz a) Reprenons l'expérience 1 Introduisons un pôle Sud dans la bobine et déterminons le sens du courant induit. Bien entendu ce courant à travers la bobine engendre un champ magnétique qui va se superposer au champ de l'aimant. Afin de ne pas confondre ces champs il convient de soigner la terminologie: * L'aimant est le système inducteur, celui qui provoque une variation de flux dans la bobine. Son champ s'appelle champ inducteur I B  ; son flux qu'il envoie à travers n'importe quelle surface s'appelle flux inducteur. * La bobine, à travers laquelle le flux inducteur varie et qui est donc parcourue par un courant induit, s'appelle bobine induite. Le champ créé par le courant induit s'appelle champ induit i B  , le flux que ce champ envoie à travers n'importe quelle surface, flux induit. Conformément à cette terminologie nous dirons : En approchant le pôle Sud, le flux inducteur à travers la bobine induite augmente (compte tenu du sens positif choisi !). Cette variation positive du flux inducteur donne naissance à un courant induit d'intensité i. 2e BC 3 Induction électromagnétique 26 Observations : i circule dans le sens opposé au sens positif choisi i circule dans un sens tel que : la bobine présente une face Sud au pôle Sud en train de s'approcher (bobine et aimant se repoussent !) ; le champ induit i B  est opposé au champ inducteur I B  en train d'augmenter ; le flux induit à travers la bobine induite (négatif !) est de signe opposé à celui de la variation du flux inducteur (positive !). Remarque : Choisissons le sens contraire comme sens positif Le flux inducteur diminue lorsqu'on approche le pôle Sud. i circule dans le sens positif. Bobine et aimant se repoussent. Champ induit et champ inducteur sont de sens contraire. Le flux induit à travers la bobine induite (positif !) est de signe opposé à celui de la variation du flux inducteur (négative !). En éloignant le pôle Sud, le flux inducteur à travers la bobine induite diminue (compte tenu du sens positif choisi !) Observations : i circule dans le sens positif 2e BC 3 Induction électromagnétique 27 i circule dans un sens tel que : la bobine présente une face Nord à l'aimant en train de s'éloigner (bobine et aimant s'attirent) ; le champ induit i B  est de même sens que le champ inducteur I B  en train de diminuer ; le flux induit à travers la bobine induite (positif !) est de signe opposé à celui de la variation du flux inducteur (négative !). b) Loi de Lenz Généralisons les résultats de l'expérience précédente ! Le courant induit circule dans un sens tel qu'il tente de s'opposer à la cause qui lui donne naissance. Cette cause est évidemment la variation du flux inducteur. Donc : Le courant induit circule dans un sens tel qu'il tente de s'opposer à la variation du flux inducteur qui lui donne naissance. c) D'où provient l'énergie électrique induite dans l'expérience 1 ? * La bobine présente une face S au pôle S de l'aimant lorsqu'on l'introduit dans la bobine : il faut donc vaincre cette force de répulsion. * La bobine présente une uploads/Litterature/ induction-electromagnetique.pdf

  • 33
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager