Reaction rates, reaction orders, rate equations, and rate determining steps La

Reaction rates, reaction orders, rate equations, and rate determining steps La loi d'Arrhenius traduit la variation de la vitesse d’une réaction chimique en fonction de la température. Cette loi empirique a été énoncée par S.A. Arrhenius en 1889 La loi d'Arrhenius est donc une loi empirique basée sur des résultats expérimentaux  Néanmoins, grande importance théorique car compatible avec la théorie des collisions et celle du complexe activé d'Eyring et Polanyi en 1935. Transition State Theory (TST) – Loi de Eyring La théorie de l'état de transition a pour objectif d'expliquer les cinétiques pour des étapes élémentaires. Cette théorie postule l'existence d'un genre spécial d'équilibre chimique, le quasi-équilibre, entre les réactifs et un complexe de transition activé. La TST permet de calculer efficacement l'enthalpie standard d'activation (Δ‡H°), l'entropie standard d'activation (Δ‡S°), et l'énergie standard d'activation de Gibbs (Δ‡G°) pour une réaction donnée. Cette théorie a été développée simultanément en 1935 par Henry Eyring, à Princeton, et par Meredith Gwynne Evans et Michael Polanyi à l'Université de Manchester. La théorie de l'état de transition est aussi connue sous les noms de théorie du complexe activé The reaction order The rate determining step The reaction profile The reaction profile Langmuir-Hinshelwood kinetics The LH model describes the most common situation in heterogeneous catalysis. It assumes that the reactant must be adsorbed on the catalyst surface before it can react. The reaction takes place at the active site, and the product is then desorbed from the catalyst back to the gas/liquid phase. Langmuir-Hinshelwood kinetics Langmuir-Hinshelwood kinetics The steady-state approximation One way of overcoming these difficulties is by assuming that the concentration of the catalytic intermediates remains constant throughout the reaction – at a steady-state concentration The steady-state approximation Practical approaches in kinetic studies A + B  C α,β ??? k ??? Practical approaches in kinetic studies Trick: creating pseudo-order conditions A + B  C TD Kinetics Speeding up the approach to equilibrium Catalysis When we consider a catalytic reaction, we may imagine that the reaction mechanism consists of many different steps. Catalyst must be a reactant in one of the first steps in the mechanism and a product in one of the last steps. Heterogeneous catalysis Chemisorption and catalysis Diffusion of reactants Adsorption Surface diffusion Reaction Desorption Diffusion of products A partir du cycle catalytique ci-dessous décrivant l’isomérisation d’un C8, déterminez les formules des vitesses r1, r2, r3 correspondant respectivement aux étapes d’adsorption, de réaction de surface et de désorption. En considérant d’une part les étapes d’adsorption et de désorption en équilibre, d’autre part l’étape limitante comme étant la réaction de surface (2), et en utilisant les concentrations surfaciques en A et B, simplifiez ainsi l’équation de la vitesse r2 Expliquez comment passer de cette nouvelle expression de la vitesse de réaction, à cette dernière expression au tableau (expliquez simplement, pas de démonstration mathématique) Two main mechanisms • Langmuir-Hinshelwood Reaction between adsorbates • Eley-Rideal Reaction between adsorbate and incoming molecule LH model for unimolecular reaction B (ads) A (g) A    Decomposition occurs uniformly across the surface. Products are weakly bound and rapidly desorbed. The rate determining step (rds) is the surface decomposition step. Rate = k qA For Langmuir adsorption p p k K 1 K Rate   pA QA fast fast RDS khet A B LH model for unimolecular reaction Two limiting cases High pressures/ Strong binding Kp>>1 Rate ≈ k Rate independent of gas pressure Zero order reaction Surface coverage almost unity Low pressures/ Weak binding Kp<<1 Rate ≈ kKp Rate linearly dependent on gas pressure First order reaction Surface coverage very low p p k K 1 K Rate   LH model for bimolecular reaction Langmuir-Hinshelwood reaction with surface reaction as rds (g) AB (ads) AB (ads) B (ads) A (ads) B (g) B (ads) A (g) A fast        rds Rate = k qA qB pA QA fast fast RDS khet A AB B pB QB Langmuir adsorption of mixed components     B d B B A B a B A d A B A A a A surface d a surface g surface d a surface g k dt d p k dt d k dt d p k dt d S B k k S B S A k k S A q q q q q q q q q q                 rate desorption ) 1 ( B of rate adsorption rate desorption ) 1 ( A of rate adsorption Langmuir adsorption of mixed components B d B a S B B B B d S B B a A d A a S A A A A d S A A a k k p k p k k k p k p k       B B A A K , K K , K m equilibriu At q q q q q q q q     1 1       B A S B A S q q q q q q Langmuir adsorption of mixed components         B B A A B B B B B A A A A A B B A A S B B A A S S B B S A A S p K p K p K p K p K p K p K p K p K p K p K p K                1 1 1 1 1 1 1 q q q q q q q Langmuir adsorption of mixed components         B B A A B B B B B A A A A A B B A A S B B A A S S B B S A A S p K p K p K p K p K p K p K p K p K p K p K p K                1 1 1 1 1 1 1 q q q q q q q LH model for bimolecular reaction Rate = k qA qB   2 1 Rate B B A A B B A A p K p K p K p kK    LH model for bimolecular reaction pA rate For constant PB QB >> QA Rate limited by surface concentration of A QB << QA Rate limited by surface concentration of B Eley-Rideal bimolecular surface reactions pA QA fast RDS khet A AB B pB An adsorbed molecule may react directly with an impinging gas molecule by a collisional mechanism Eley-Rideal bimolecular surface reactions rate = k QA pB  k KApA pB / (1+KApA) QA = 1 pA rate For constant PB Low pressure Weak binding KApA << 1 rate = khet KA pA pB …….. first order in A kexp High pressure Strong binding KApA >> 1 rate = k pB …….. zero order in A kexp Note: For constant pA, the rate is always first order wrt pB Diagnosis of mechanism If we measure the reaction rate as a function of the coverage by A, the rate will initially increase for both mechanisms. Eley-Rideal: rate increases until surface is covered by A. Langmuir-Hinshelwood: rate passes a maximum and ends up at zero, when surface covered by A. B + S  B-S cannot proceed when A blocks all sites. uploads/Philosophie/ td-kinetics-landmyer.pdf

  • 31
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager