Septembre 2005 Comment réduire les émissions de CO2 ? Les réponses de l'IFP L'I

Septembre 2005 Comment réduire les émissions de CO2 ? Les réponses de l'IFP L'IFP inscrit les travaux sur la réduction des émissions de CO2 au cœur de ses programmes de recherche. La stratégie de l'IFP vise, en effet, à répondre aux nouveaux enjeux industriels et sociétaux dans les domaines de l’énergie, des transports et de l’environnement. La prévention des risques de changement climatique dû aux émissions de gaz à effet de serre, et tout particulièrement de CO2, constitue l'un de ces enjeux auquel la recherche doit pouvoir apporter des réponses. − La réduction des émissions de CO2 et la transition énergétique Le secteur énergétique est responsable d'environ 80 % des émissions de gaz à effet de serre. La demande mondiale d'énergie va croître de façon significative dans les prochaines décennies, en particulier dans les pays en développement (Chine et Inde). Cette croissance de la demande sera principalement due à la production d'électricité et aux besoins de transport, secteurs à l’origine des émissions de gaz à effet de serre les plus élevées. Parallèlement, les énergies fossiles (pétrole, gaz et charbon) - dont la combustion est à l'origine de plus des trois quarts des émissions de CO2 - vont continuer à jouer un rôle majeur dans les prochaines décennies, en particulier dans le secteur des transports. Dans ce contexte, l'enjeu est de pouvoir continuer à utiliser les combustibles fossiles - tant que ceux-ci sont disponibles et en attendant des énergies alternatives pouvant s'y substituer massivement - mais de façon plus propre. Il apparaît notamment urgent de maîtriser les émissions de CO2. Les recherches de l'IFP visent à développer des technologies permettant d'assurer cette transition énergétique dans des conditions environnementales et économiques acceptables. − L'IFP et la réduction des émissions de CO2 dans le domaine des transports Le secteur des transports, deuxième secteur émetteur de CO2, dépend à 98 % du pétrole. Les énergies alternatives existent mais ne représentent et ne représenteront, à court et à moyen termes, qu’une part relativement faible du total de la consommation, pour des raisons à la fois économiques et de disponibilité. Une transition massive vers une autre source d'énergie ne pourra se faire avant plusieurs décennies. La réduction des émissions de CO2, qui passe par la réduction de la consommation des moteurs, constitue donc un défi majeur pour l'industrie et la recherche automobiles. ▪ L'amélioration du rendement des moteurs L'IFP travaille à l'amélioration des technologies traditionnelles moteurs et carburants, et en particulier, à la réduction de la consommation et des émissions des véhicules. Pour le moteur à essence, l'IFP développe des technologies diminuant sensiblement la consommation et, par conséquent, les émissions de CO2 (technologie "downsizing" de réduction de la taille du moteur avec suralimentation adaptée, nouveaux modes de combustion, etc.). L'hybridation est également une voie étudiée par l'IFP. La gestion optimisée de l'énergie à bord du véhicule hybride permet de réduire les consommations. ▪ Le développement de carburants à contenu carboné moins élevé La réduction des émissions de CO2 passe également par l'utilisation de carburants émettant moins de CO2 que le pétrole, comme le gaz naturel comprimé pour véhicules (GNV), les biocarburants ou les GTL (gas to liquid)*. L'IFP développe des procédés innovants de production de ces carburants et met au point des moteurs dédiés en adaptant les moteurs classiques. * le gaz naturel est converti en « gaz de synthèse » (un mélange de monoxyde de carbone (CO) et d’hydrogène) qui peut être transformé en carburant liquide par synthèse Fischer-Tropsch. ▪ La conception, à plus long terme, de technologies futures de rupture À plus long terme, l'utilisation de l'hydrogène dans le secteur des transports pourrait constituer une alternative aux carburants d'origine fossile et contribuer à la réduction des émissions de CO2. Mais son développement se heurte encore à des défis scientifiques, technologiques et économiques majeurs. L'IFP, qui présente à son actif d'importants travaux de R&D sur la production d'hydrogène (reformage), son stockage et son utilisation, tant dans l'industrie du raffinage que dans le domaine des transports (piles à combustibles), est bien placé pour accompagner l'émergence de cette nouvelle filière. Le développement des filières de production d'hydrogène à partir de combustibles fossiles (avec capture et stockage du CO2) permettrait d'amorcer la transition énergétique vers une économie de l'hydrogène dont le déploiement ne pourra être que long et très progressif. − L'IFP, acteur sur l'ensemble de la filière capture, transport et stockage du CO2 Plus d'un tiers des émissions de CO2 dans le monde est produit par des sources concentrées (centrales thermiques, cimenteries, raffineries, etc.). La capture et le stockage du CO2 apparaît comme la seule solution pouvant limiter, à grande échelle, ces émissions. Cette filière offre une solution de transition pour une industrie qui va continuer à utiliser en partie les énergies fossiles, en attendant que des énergies renouvelables puissent progressivement prendre le relais. L'IFP est fortement engagé dans la recherche de technologies nouvelles sur toute la filière, - capture, transport et stockage - les compétences nécessaires à leur développement étant celles mises en œuvre dans le cadre de l'exploitation pétrolière. L'IFP participe, dans ce domaine, à plusieurs programmes de recherche et développe ses propres procédés, dans un souci constant de rentabilité et de finalité industrielle. ▪ Point économique clé : la capture du CO2 D'un point de vue économique, c'est d'abord sur les technologies de capture que des progrès notables doivent être faits. Cette étape, qui consiste à séparer le CO2 des autres constituants (vapeur d'eau, azote…), représente environ 70% du coût total, évalué entre 50 et 70 € par tonne de CO2 évitée. Il existe des procédés de capture du CO2 qui sont bien connus, en particulier à l’IFP : ils sont utilisés depuis longtemps dans l’exploitation du gaz naturel dont les concentrations en CO2 sont réglementées. Le CO2 est extrait dans des colonnes de lavage grâce à un solvant chimique qui est ensuite régénéré. Le même principe pourrait être utilisé pour piéger le CO2 rejeté dans les fumées de combustion. Mais, compte tenu des volumes à traiter et de leur faible concentration et faible pression en CO2, le procédé induit une forte surconsommation énergétique. L'IFP étudie de nouvelles technologies en mettant l'accent sur la minimisation de leur consommation énergétique et la réduction de la taille des installations et des investissements. Des solutions prometteuses ont été brevetées à l'IFP courant 2004. Elles sont, pour l'instant, au stade des études de laboratoire. Leur débouché industriel est envisagé à l'horizon 2010-2015. Dans le cas de nouvelles installations, des solutions plus efficaces sont envisagées comme l’oxy-combustion, une combustion en présence d’oxygène pur au lieu de l’air, qui permet d’obtenir des fumées plus concentrées en CO2. Mais la séparation de l'oxygène de l'air, obtenue en général par distillation cryogénique, est coûteuse et consommatrice d'énergie. L'IFP étudie également un autre moyen de production d’oxygène à partir de l’air qui consiste à placer dans la zone de combustion un support métallique qui, en circulant, transfère l'oxygène. La troisième solution, à plus long terme, est la plus ambitieuse mais aussi la plus prometteuse. Elle consiste à isoler le CO2 produit par les combustibles fossiles ou d’autres charges (comme la biomasse), mais cette fois avant l’étape de combustion. Cette voie permettrait de produire de l’hydrogène tout en capturant efficacement le CO2*. Dans ce domaine, l'IFP participe au programme européen, HypoGen, lancé en 2004. * le combustible est converti en entrée d’installation en gaz de synthèse, mélange de monoxyde de carbone (CO) et d'hydrogène. Puis lors d'une étape de conversion, le CO réagit avec l'eau pour former du CO2 et de l'hydrogène qui sont ensuite séparés. ▪ Transporter et injecter du CO2 liquide Le CO2 devra ensuite être acheminé, probablement sur plusieurs centaines de kilomètres, vers un lieu de stockage. A l’heure actuelle, pour les besoins de l’industrie pétrolière, on le transporte dans des gazoducs, à l’état supercritique (à plus de 31°C et 73 bars). Cela nécessite des installations de compression et d’injection adaptées. L'IFP développe une solution alternative, où le CO2 pourrait être transporté et injecté dans le sous-sol à l’état liquide, à une température qui reste proche de la température ambiante. Après deux années de recherches, l'IFP a breveté un procédé d’injection de CO2 liquide qui devrait être testé dans un pilote industriel et qui devrait permettre de réduire sensiblement les investissements correspondants. ▪ Stocker du CO2 dans le sous-sol profond en toute sécurité Trois solutions de stockage devraient permettre de séquestrer le CO2 sur de longues périodes ; il s'agit de couvrir non seulement la durée pendant laquelle les combustibles fossiles resteront disponibles, 1 à 2 siècles, mais aussi la durée du cycle océanique, environ un demi millénaire. Première solution : les gisements de pétrole et de gaz naturel épuisés. Ils ont l’avantage d’être bien connus et leur étanchéité a, en quelque sorte, déjà été éprouvée. Les pétroliers utilisent déjà l'injection de CO2 pour améliorer la récupération du pétrole. Néanmoins, leurs capacités sont limitées (920 milliards de tonnes) et souvent très éloignées des installations industrielles. La vraie capacité de stockage se situe dans les aquifères salins profonds. Ces nappes d’eau souterraines uploads/Industriel/ comment-reduire-les-emissions-de-co-les-reponses-de-l-x27-ifp.pdf

  • 24
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager