Cours PCSI Formules de Taylor Table des matières Introduction..................
Cours PCSI Formules de Taylor Table des matières Introduction..........................................................................................................................................2 I- Formule de Taylor avec reste intégral...............................................................................................4 1- Théorème.....................................................................................................................................4 2- Application aux polynômes.........................................................................................................5 II- Inégalité de Taylor-Lagrange...........................................................................................................7 III- Formule de Taylor Young...............................................................................................................9 1/10 Cours PCSI Formules de Taylor Introduction Les formules de Taylor permettent d'approcher des fonctions transcendantes par des polynômes. Elles permettent d'approcher des irrationnels par des rationnels (exemple e). (Taylor-Lagrange). Développement en série. TAYLOR Brook, anglais, 1685-1731 Savant éclectique, Brook Taylor s'adonna à la musique, à la peinture et à la philosophie. Il fut formé aux mathématiques par John Machin et compléta ses études à l'université de Cambridge. Admirateur de Newton, dont il adopta les idées et perfectionna sa méthode des fluxions, Taylor fut membre de la Royal Society de Londres (l'équivalent de notre Académie des sciences) dès 1712 (il n'a que 27 ans). Il en fut le secrétaire en 1714. En dehors de certains travaux en géométrie axés sur la perspective qui servira de base à la photogrammétrie, on lui doit principalement la publication (1715-1717) de son traité sur le développement en série des fonctions : Methodus incrementorum directa et inversa, qui engendra injustement des disputes de paternité car il fut le premier à établir de tels développements dans le cas général et non pour une fonction particulière. La célèbre formule est en fait l'aboutissement de travaux entamés auparavant par Gregory, Newton, Leibniz et Jacques Bernoulli. Selon CDSB, en 1712, dans une lettre à son ancien maître, John Machin, Taylor écrit que sa formule est née du problème de Kepler concernant le calcul de l'anomalie excentrique d'une planète : Le calcul (ou la majoration) du reste rn n'est pas étudié rigoureusement par Taylor. Un exemple de développement de Taylor convergent, mais non vers la fonction initiale, fut d'ailleurs donné par Cauchy au moyen de la fonction : e 1 x 2 C'est pourquoi, suite à des travaux ultérieurs, sa formule est partiellement rebaptisée : formule de Taylor-Lagrange, Taylor-Young, Taylor-Laplace : Extraits de http://serge.mehl.free.fr/ Formule de Taylor avec reste intégral (f de classe Cn+1 ): généralisation de : f (x)= f (a)+∫ a x f ' (t)dt pour une fonction de classe C1 . Inégalité de Taylor-Lagrange, (f de classe Cn+1 ): généralisation de l'inégalité des accroissements finis. Si f est de classe C1 et que ∣f '∣ est majorée par M. ∣f (b) f (a)∣≤M (ba) Inégalité de Taylor-Young (f est de classe Cn ), généralisation de f de classe C1 : f (x)= f (a)+ f ' (a)( xa)+ǫ( x)( xa) 2/10 Cours PCSI Formules de Taylor 3/10 Cours PCSI Formules de Taylor I- Formule de Taylor avec reste intégral . 1- Théorème Soit f une fonction de classe C n+1 sur un intervalle I et (a ,b)∈I 2 , on a : f (b)=∑ k=0 n f (k)(a) k! (ba) k+∫ a b (bt) n n! f (n+1)(t)dt Remarque : la formule peut s'écrire avec x. Démonstration : récurrence sur n. Initialisation : Au rang 0, la formule de Taylor avec reste intégral est : f (b)=f (a)+∫ a b f '(t)dt pour f ∈C1( I ) (intégrale opération inverse de la dérivée). Hérédité. On suppose que la propriété est vraie au rang n, montrons qu'elle est vraie au rang n+1. Soit f une fonction de classe C n+2 sur un intervalle I, montrons que : f (b)=∑ k=0 n+1 (ba) k k! f (k)(a)+∫ a b (bt) n+1 (n+1)! f ( n+2)(t)dt . f est une fonction de classe C n+2 sur I, donc f est de classe C n+1 sur I. On applique l'hypothèse de récurrence. f (b)=∑ k=0 n (ba) k k! f k(a)+∫ a b (bt) n n ! f n+1(t)dt (1) Les fonction g(t)=(bt) n n ! et f ( n+1) sont de classe C 1 sur [a,b] . On peut faire un intégration par parties et on obtient : ∫ a b (bt) n n! f (n+1)(t)dt=[(bt) n+1 (n+1)! f (n+1)(t)]a b +∫ a b (bt) n+1 (n+1)! f (n+2)(t)dt ∫ a b (bt) n n! f (n+1)(t)dt=(ba) n+1 (n+1)! f (n+1)(a)+∫ a b (bt) n+1 (n+1)! f (n+2)(t)dt . Et en remplaçant l'intégrale dans (1) on obtient le résultat. 4/10 Cours PCSI Formules de Taylor Remarques : la formule de Taylor avec reste intégral est une égalité. Permet de faire des développements en série si le reste tend vers 0. Si les dérivées f (n) ont le même majorant, démonstration plus facile. Exemple : e x=∑ k=0 n x k k!+∫ 0 x (xt) n n! e tdt . Et on obtient : e x=∑ k=0 +∞x k k! Écriture du reste avec des bornes fixes. On effectue le changement de variable : t=(ba)x+a et x= ta ba ⇒dt=(ba)dx ∫ a b (bt) n n! f n+1(t)dt=∫ 0 1 (b((ba)x+a)) n n ! f n+1((ba)x+a)(ba)dx ∫ a b (bt) n n! f n+1(t)dt=(ba) n+1 n! ∫ 0 1 (1x) nf n+1(a+(ba)x)dx 2- Application aux polynômes. Soit P un polynôme de degré n , on a P (n+1) est le polynôme nul et on obtient : P(x)=∑ k=0 n (xa) k k ! P (k)(a)+∫ a x (xt) n n ! P (n+1)(t)dt et comme P (n+1)=0 . Théorème : formule de Taylor pour les polynômes. P(X)=∑ k=0 n P (k)(a) k! (Xa) k Corollaire : ∀a∈K , ((Xa) k)0≤k≤n forme une base de K[X] . Démonstration : elle est génératrice et a (n+1) éléments. Remarque : on peut démontrer la formule de Taylor par d'autres méthodes. 1 ère méthode : formule de Mac-Laurin. On peut la démontrer d'abord en 0. Si P=∑ k=0 n ak X k alors ak k!=P (k)(0) et ak=P (k)(0) k! et : 5/10 Cours PCSI Formules de Taylor P(X)=∑ k=0 n P (k)(0) k! X k . Pour la démontrer en a , on pose Q(X)=P(X+a) et on applique la relation précédente au polynôme Q. Puis on retrouve le résultat avec P(X)=Q(Xa) . 2 ième méthode : l'algèbre linéaire. On démontrer que la famille ((Xa) k)0≤k≤n est libre car car elle est échelonnée en degré. Elle a (n+1) éléments et dim(K n[ X ])=n+1 . C'est donc une base, et P peut s'écrire. P=∑ k=0 n λk(Xa) k Et on a : P (k)(a)=k!λk⇒λk= P (k)(a) k! 6/10 Cours PCSI Formules de Taylor II- Inégalité de Taylor-Lagrange. Théorème Soit f une fonction de classe C n+1 sur [a ,b] . ∣f (b)∑ k=0 n (ba) k k! f k(a)∣≤M (ba) n+1 (n+1)! , avec M = sup t∈[a , b]∣f ' (t)∣ Démonstration : C'est un corollaire de la formule de Taylor avec reste intégral. f (b)∑ k=0 n (ba) k k! f (k)(a)=∫ a b (bt) n n! f (n+1)(t)dt ∣f (b)∑ k=0 n (ba) k k! f (k)(a)∣=∣∫ a b (bt) n n ! f (n+1)(t)dt∣ ∣f (b)∑ k=0 n (ba) k k! f (k)(a)∣≤∫ a b ∣ (bt) n n ! f (n+1)(t)∣dt Sur [a ,b] , (bt) est positif donc : ∣f (b)∑ k=0 n (ba) k k! f (k)(a)∣≤∫ a b (bt) n n! ∣f (n+1)(t)∣dt Or : ∀t∈[a ,b],∣f (n+1)(t)∣≤M ∣f (b)∑ k=0 n (ba) k k! f k(a)∣≤∫ a b (bt) n n ! M dt ∣f (b)∑ k=0 n (ba) k k! f k(a)∣≤M∫ a b (bt) n n ! dt ∣f (b)∑ k=0 n (ba) k k! f k(a)∣≤M[(bt) n+1 (n+1)! ] a b ∣f (b)∑ k=0 n (ba) k k! f k(a)∣≤M (ba) n+1 (n+1)! Remarque 7/10 Cours PCSI Formules de Taylor Pour n=0, l'inégalité de Taylor Lagrange se traduit par : une fonction dérivable qui a une dérivée bornée est lipschitzienne. Inégalité des accroissements finis. ∣f (b)f (a)∣≤M(ba) . - Pour a=0 , on obtient une majoration par : M ∣x∣n+1 (n+1)! qui est un O( xn+1) et donc un o( xn) Joseph-Lagrange (1736-1813) né à Turin (Italie) Enseigne les mathématiques à l'âge de 19 ans. Mécanique analytique. Problème des 3 corps. 8/10 Cours PCSI Formules de Taylor III- Formule de Taylor Young Théorème Si f est une fonction de classe C n sur I , alors : f (x)=∑ k=0 n f (k)(a) k ! (xa) k+o(xa) n . Il existe une fonction ǫ qui tend vers zéro lorsque x tend vers a telle que : f (x)=∑ k=0 n f (k)(a) k ! (xa) k+(xa) nǫ(x) Remarque : si f est de classe Cn+1 , le résultat est une conséquence directe de l'inégalité de Taylor-Lagrange. Dans ce cas le reste est même un O( xa)n+1 . A fortiori pour des fonctions de classe C∞. Démonstration On pose : g(x)=f (x)∑ k=0 n f (k)(a) k! (xa) k . On doit montrer que : g( x)=o(xa)n c'est-à-dire que : lim x →a g( x) ( xa) n=0 On a : g(a)=0 . Et on trouve de même que g ' (a)=0 et on a : g(a)=g'(a)=....=g (n1)(a)=0 (on a aussi g(n)(a)=0 ) D'après l'inégalité de Taylor-Lagrange appliquée à g qui est de classe C(n1)+1 , on obtient : ∣g(x)∑ k=0 n1 (xa) k k! g k(a)∣≤(xa) n n! sup α∈[a ,x]∣g uploads/Litterature/ formules-20de-20taylor.pdf
Documents similaires
-
22
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Mar 27, 2022
- Catégorie Literature / Litté...
- Langue French
- Taille du fichier 0.0463MB