HAL Id: tel-01298416 https://hal.archives-ouvertes.fr/tel-01298416 Submitted on
HAL Id: tel-01298416 https://hal.archives-ouvertes.fr/tel-01298416 Submitted on 5 Apr 2016 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Battery Electrical Vehicles-Analysis of Thermal Modelling and Thermal Management Ahmadou Samba To cite this version: Ahmadou Samba. Battery Electrical Vehicles-Analysis of Thermal Modelling and Thermal Manage- ment . Electric power. LUSAC (Laboratoire Universitaire des Sciences Appliquées de Cherbourg), Université de caen Basse Normandie; MOBI (the Mobility, Logistics and Automotive Technology Research Centre), Vrije Universiteit Brussel, 2015. English. NNT : 2015CAEN2003. tel-01298416 UNIVERSITÉ DE CAEN BASSE NORMANDIE U.F.R. de Sciences Ecole doctorale SIMEM THÈSE présentée et soutenue le : 26/03/2015 par Ahmadou SAMBA En vue de l’obtention du DOCTORAT de l’UNIVERSITÉ de CAEN Spécialité : Génie Electrique préparée dans le cadre d’une cotutelle internationale de thèse entre l’Université de Caen Basse-Normandie et Vrije Universiteit Brussel/Belgique Battery Electrical Vehicles- Analysis of Thermal Modelling and Thermal Management Contribution à la Modélisation et à la Gestion Thermique des Batteries Lithium-Ion pour des Applications de Véhicules Electriques Jury Daniel Hissel, Professeur, Université de Franche-Comté (Rapporteur) Brayima Dakyo, Professeur, Université du Havre (Rapporteur) Stéphane Raël, Professeur, ENSEM Nancy Hasna Louahlia-Gualous, MCF-HDR, Université de Caen Basse-Normandie Noshin Omar, Professeur, Vrije Universiteit Brussel/Belgique Joeri Van Mierlo, Professeur, Vrije Universiteit Brussel/Belgique Hamid Gualous, Professeur, Université de Caen Basse-Normandie, (directeur de thèse) I Composition of the Jury Chairman of the jury: - Professor Annick Hubin: Vrije Universiteit Brussel – Research Group Electrochemical and Surface Engineering (SURF), Belgium Vice-Chairman of the jury: - Professor Rik Pintelon: Vrije Universiteit Brussel – Department of Fundamental Electricity and Instrumentation (Vakgroep Elektriciteit – ELEC), Belgium Promoters: - Professor Joeri Van Mierlo: Vrije Universiteit Brussel – Research Group Mobility and Automotive Technology (Vakgroep Electrotechniek en Energietechnologie – ETEC), Belgium - Professor Hamid Gualous: Université de Caen Basse Normandie, Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), France - Professor Noshin Omar: Vrije Universiteit Brussel – Research Group Mobility and Automotive Technology (Vakgroep Electrotechniek en Energietechnologie – ETEC), Belgium Secretary of the jury: - Professor Peter Van den Bossche: Vrije Universiteit Brussel – Research Group Mobility and Automotive Technology (Vakgroep Electrotechniek en Energietechnologie – ETEC & Vakgroep Industriële Wetenschappen - INDI), Belgium Members of the jury: - Professor Daniel Hissel: Université de Franche-Comté, Franche-Comté Electronique, Mécanique, Thermique et Optique - Sciences et Technologies (FEMTO-ST), France - Professor Brayima Dakyo: Université du Havre, Groupe de Recherche en Electrotechnique et Automatique du Havre (GREAH), France - Professor Hans Jürgen Seifert: Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics, Germany II - Professor Hasna Louahlia-Gualous: Université de Caen Basse Normandie, Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), France - Professor Stéphane RAEL : Ecole Nationale Supérieure d’Electricité et de Mécanique Nancy, Groupe de Recherche en Électrotechnique et Électronique de Nancy (GREEN), France - Assistant Professor Tala-Ighil Boubekeur : Université de Caen Basse Normandie, Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), France III Acknowledgments First and foremost, I offer my sincere gratitude to my supervisors Prof. Hamid Gualous, Prof. Joeri Van Mierlo and Prof. Noshin Omar for offering me the opportunity to perform a joint PhD between the Vrije Universiteit Brussel and the University of Caen and for their continuous support and motivation during my year of research. Without their enthusiasm, inspiration and expertise, this thesis would not have been possible. Special thanks go to Prof. Noshin Omar, for his help, encouragement and the fruitful discussion during the hardest time of my year research. Furthermore, I would like to thank Prof. Peter Van den Bossche, Prof. Noshin Omar and Prof. Joeri Van Mierlo for all the time that they spent in reviewing and correcting the manuscript. I would also like to extend my appreciation to the Jury members for their comments and suggestions during the private defense. Special thanks goes to Tala-Ighil Boubekeur for his guidanceduring the first part of my PhD and his support for designing the battery tester in LUSAC laboratory and Jelle Smekens for translating the summary of my PhD into Dutch. I also wish to express my warm thanks to my colleagues at ETEC department: Omar Hegazy, Mohamed Monem, Yousef Firouz, Odile Capron, Thierry Coosemans, Alexandros Nikolian, Joris De Hoog, Shovon Goutam, Elisabeth Leloup, Sylvia Heyvaert, Rahul Gopalakrishnan, Jean-Marc Timmermans, Karel Fleurbaey, Mohamed El Baghdadi, Maarten Messagie, Luis Hernandez, Maria Oliveira, Maitane Berecibar, Nils Hooftman, Surendraprabu Rangaraju, Yang, Cedric De Cauwer for their friendship and the nice working atmosphere they created in the team. I also would like to thank my colleagues at LUSAC laboratory: Amrane Oukaour, Youssef Slamani, Moataz Elsied, for their friendship and the nice working atmosphere. Last but not the least; I would like to express my appreciation to my beloved wife, for her love, sacrifice, patience, tolerance and encouragement. I would like to express my deepest gratitude and sincere appreciation towards my parents, brothers, sisters, and relatives for their love, support and encouragement. Finally, I would like to dedicate my dissertation to my godfather Ahmadou Kane. Brussels, March 2015 IV V Table of Contents Composition of the Jury ............................................................................................................... I Acknowledgments ..................................................................................................................... III Table of Contents ........................................................................................................................ V List of Figures ............................................................................................................................. IX List of Tables .............................................................................................................................. XV List of Acronyms .................................................................................................................... XVII List of Symbols ......................................................................................................................... XIX 0. General Introduction ........................................................................................................... 1 0.1 Goal ................................................................................................................................. 1 0.2 Outline of performed research work ............................................................................... 1 1. Background Information ..................................................................................................... 7 1.1 Introduction ................................................................................................................... 7 1.2 Alternative powertrains ............................................................................................... 9 1.2.1 Hybrid Electrical Vehicles (HEVs) ...................................................................... 9 1.2.2 Plug-in Hybrid Electric Vehicles (PHEVs) ....................................................... 11 1.2.3 Battery Electric Vehicles (BEVs) ......................................................................... 12 1.3 Lithium-ion battery ..................................................................................................... 15 1.3.1 Cathode material .................................................................................................. 17 1.3.2 Anode material ..................................................................................................... 18 1.3.3 Electrolyte .............................................................................................................. 19 1.3.4 Summary of commercial lithium ion batteries ................................................ 20 1.3.5 Choice of the battery chemistry in this PhD .................................................... 20 2. State-of-the-Art of Battery Thermal Management ........................................................ 25 2.1 Goal ............................................................................................................................... 25 2.2 Introduction ................................................................................................................. 25 2.3 Battery thermal behavior, modeling and characterization ................................... 28 2.3.1 Battery geometry, external and internal structures ........................................ 28 2.3.2 Impact of temperature on the battery behaviors ............................................. 29 2.3.3 Effect of cell design on the cell behaviors ......................................................... 29 2.4 Battery Models ............................................................................................................. 30 VI 2.4.1 Electrical-thermal modeling ............................................................................... 30 2.4.2 Electrochemical-thermal modelling .................................................................. 36 2.5 Battery Thermal management ................................................................................... 38 2.5.1 Global principles of a battery thermal management system ......................... 38 2.5.2 Commercial applications of BTMS .................................................................... 43 2.6 Conclusions .................................................................................................................. 43 3. Electrical –Thermal Model for Large Size Lithium-ion Cells ...................................... 47 3.1 Goal ............................................................................................................................... 47 3.2 Introduction ................................................................................................................. 47 3.3 Thermal modelling ...................................................................................................... 48 3.3.1 Model assumptions and geometry features ..................................................... 48 3.3.2 Governing equations and boundary conditions ............................................. 49 3.3.2.1 Governing equations ................................................................................................... 49 3.3.2.2 Boundary conditions ................................................................................................... 50 3.3.3 Heat generation measurement ........................................................................... 51 3.3.3.1 Internal resistance measurement ............................................................................... 52 3.3.3.2 Entropy coefficient measurement .............................................................................. 55 3.3.4 Battery thermal model parameters .................................................................... 58 3.4 Experimental ................................................................................................................ 62 3.5 Results and discussion ................................................................................................ 66 3.5.1 Numerical aspect .................................................................................................. 66 3.5.2 Model validation .................................................................................................. 67 3.6 Conclusions .................................................................................................................. 72 4. Pouch Cell Design: Impact of Tab Location ................................................................... 75 4.1 Goal ............................................................................................................................... 75 4.2 Introduction ................................................................................................................. 75 4.3 Model Description ....................................................................................................... 76 4.3.1 Model assumptions and geometry features ..................................................... 76 4.3.2 Electrochemical modeling................................................................................... 78 4.3.3 Thermal modeling ................................................................................................ 81 4.3.4 Model Input .......................................................................................................... 82 4.3.5 Numerical method and Validation.................................................................... 82 VII 4.3.5.1 Numerical aspects ........................................................................................................ 82 4.3.5.2 Model validation .......................................................................................................... 84 4.4 Results and discussion ................................................................................................ 89 4.5 Conclusion .................................................................................................................. 101 5. Numerical Analysis of Different Battery Thermal Management Systems .............. 105 5.1 Goal ............................................................................................................................. 105 5.2 Introduction ............................................................................................................... 105 5.3 Liquid cooling method ............................................................................................. 107 5.3.1 Investigation of the cooling plate’s designs ................................................... 107 5.3.1.1 Model assumptions and geometry features ........................................................... 107 5.3.1.2 Model development ................................................................................................... 109 5.3.1.2.1 Battery domain ..................................................................................................... 109 5.3.1.2.2 Cooling plate domain .......................................................................................... 112 5.3.1.2.3 Numerical procedure .......................................................................................... 117 5.3.1.3 Results of the different cooling plate designs ........................................................ 118 5.3.1.3.1 Effect of the channel design ................................................................................ 118 5.3.1.3.2 Influence of inlet temperature ............................................................................ 121 5.3.2 Impact of cooling plate location on the Battery module thermal management system ............................................................................................................................... 124 5.3.2.1 Model assumptions and geometry features ........................................................... 124 5.3.2.2 Results .......................................................................................................................... 126 5.3.2.2.1 Comparison of the different cooling plate location......................................... 126 5.3.2.2.2 Influence of current rate ...................................................................................... 131 5.3.2.2.3 Influence of the inlet and initial temperatures ................................................. 132 5.3.2.2.4 Influence of the flow rate .................................................................................... 134 5.4 Solid-liquid phase change material cooling method ............................................ 136 5.4.1 Model Description ............................................................................................. 136 5.4.1.1 Geometry features and Model assumptions .......................................................... 136 5.4.1.2 Model development ................................................................................................... 137 5.4.1.2.1 Battery domain ..................................................................................................... 137 5.4.1.2.2 PCM domain ......................................................................................................... 137 5.4.1.2.3 Boundary and initial conditions ........................................................................ 141 VIII 5.4.1.2.4 Input parameters .................................................................................................. 141 5.4.2 Results .................................................................................................................. 142 5.4.2.1 Influence of current rate uploads/Litterature/ phd-version-ahmadou-samba-rapport-final-ucbn-pdf 1 .pdf
Documents similaires
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/t6GPhiLkJ90HMTnqB0Zxor0cT1URG4A1p56b2txqjWfAUDmV14OD1itETgjQopKQOH3EqnV4DHQajqK97ERpqTiT.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/uAgxHsTBJ79s3jWK98FfmexEMvlJn8yGTGtDIofhVPNBWh5T2JJQVfY1XfJm8WvImBZIxH2iYiEXLWHCILaAxONq.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/p2S0OMjMZ4cbONha0qFaOInzBDNeg2C3rwRr9b4SAGsYb15P9yzsoAnzMKO8LJ25yKKvvFJib5RqvsBh64V2NsKO.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/nBiLK2AGzWXqLjjBkOu0SpNXvkrXfJew6dEHxflQqpth2T4go6mTtyvL7tt4iEfVkY27kDewDCRV9RxXS9Mg6jMX.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/lHuSKDalkddtRI1LpJ5VyAxrWbepd8A6rKULHTTlXSJP6Tqy7bC947hmjIiUP5TOmAnQV39cRHuklryEQaV7c2YI.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/bbyuXTw8PjEmlu7np6O3rZ6anBxupMCT8hDmiHq3pCySoQ50TzDAjYwfs9U8KjvQdA1YmU46VvUTdvvp8LsVIlSh.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/hcwgVYTC1JCfPrc17DqNgpZzYCt5FYFZUvEVfTKsMasj4FZNlaDmrc2Sphy7GLH76PPaNIgISBLcI1KwFg5O19C8.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/gIMdf07HKJ7xMaNlc6kmfNaXTK0GShAvlv1qlOVuV5oWc7lk62CU2LKQuSoOHuDpClRsFAFpySkreMmc8BFBEESD.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/XU3mz5e6h29gjL4qxyicbQNX3mPfXVR7iNRWGPbzZV9uoG3zwv5kFhXfPtt0Zne2adpNGwuujH2RZF87jJjnq8Hr.png)
![](https://b3c3.c12.e2-4.dev/disserty/uploads/preview/PKNutC1YLrA3pQvtfjkmtD4ZQn9Uve2VsfaxjAQ56p7XRMi2yEwJ8veeIvNQVfDBjHpRZO5x4y5usq3WZIpTwsGk.png)
-
23
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Dec 17, 2021
- Catégorie Literature / Litté...
- Langue French
- Taille du fichier 5.2510MB