HAL Id: tel-00629695 https://theses.hal.science/tel-00629695 Submitted on 6 Oct
HAL Id: tel-00629695 https://theses.hal.science/tel-00629695 Submitted on 6 Oct 2011 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Ambient energy harvesting based on coupling effects in materials : applications in buildings Qi Zhang To cite this version: Qi Zhang. Ambient energy harvesting based on coupling effects in materials : applications in buildings. Architecture, space management. Université de Grenoble; University of science and technology of China, 2011. English. NNT : 2011GRENA005. tel-00629695 1 / 180 THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Mécanique et Matériaux Arrêté ministériel : 7 août 2006 Présentée par Qi ZHANG Thèse dirigée par Amen Agbossou codirigée par Daniel Guyomar et Zhihua FENG préparée au sein du LOCIE dans l'École Doctorale SISEO Récupération de micro-énergie renouvelable par couplage multiphysique des matériaux : applications aux bâtiments Thèse soutenue publiquement le 14 avril 2011 devant le jury composé de : M. Orphée CUGAT Dir. Rech. G2Elab - ENSE3, Grenoble, (Président) M. Jean-François ROUCHON Pr. INP de Toulouse (Rapporteur) M. Christophe GOUPIL Pr. CRISMAT UMS-CNRT, ENSI Caen, (Rapporteur) M. Guillaume FOISSAC Ing., EDF R&D, Moret sur Loing, (Membre) M. Adrien BADEL MCF, Université de Savoie, SYMME, Annecy, (Membre) M. Amen AGBOSSOU Pr. Université de Savoie, LOCIE, Chambéry, (Dir. Thèse, Membre) M. Daniel GUYOMAR Pr. INSA - LGEF, Lyon, (Co-dir., Membre) M. Zhihua FENG Pr. University of Science and Technology of China, (Co-dir., Membre) 2 / 180 3 / 180 4 / 180 5 / 180 Table of contents Acknowledgement ..................................................................................................... 7 Abstract ..................................................................................................................... 8 Résumé ..................................................................................................................... 9 List of Latin Symbols .............................................................................................. 10 List of Greek Symbols ............................................................................................. 14 Résumé étendu de 20 pages en français ................................................................... 17 1. General introduction ............................................................................................ 37 2. Energy harvesting and thermal energy storage with some well known effect ........ 39 2.1 Thermoelectric coupling effect and energy harvesting ................................ 39 2.1.1 Thermoelectric effect ....................................................................... 39 2.1.2 Review of literature ......................................................................... 42 2.2 Pyroelectric coupling effect and energy harvesting ..................................... 48 2.2.1 Pyroelectric effect ........................................................................... 48 2.2.2 Review of literature ......................................................................... 49 2.3 Piezoelectric coupling effect and energy harvesting ................................... 55 2.3.1 Piezoelectric effect .......................................................................... 55 2.3.2 Review of literature ......................................................................... 58 2.3.3 Enhanced energy conversion efficiency with SSHI technique .......... 66 2.4 Electromagnetic and electrostatic effects for energy harvesting .................. 69 2.4.1 Electromagetic energy harvesting .................................................... 69 2.4.2 Electrostatic energy harvesting ........................................................ 70 2.5 Thermal energy storage with phase change material ................................... 72 2.6 Sectional summary ..................................................................................... 73 3. Ambient energy harvesting .................................................................................. 75 3.1 Characteristics of ambient energy source.................................................... 75 3.1.1 Analysis of typical case ................................................................... 75 3.1.2 Modeling of solar thermal energy .................................................... 77 3.2 Literature review ........................................................................................ 79 3.2.1 Direct Solar thermal energy harvesting ............................................ 79 3.2.2 Wind energy harvesting ................................................................... 83 3.2.3 On harvesting other ambient energy ................................................ 87 3.3 Sectional summary ..................................................................................... 88 4. Solar energy harvesting through thermoelectric effect .......................................... 89 4.1 Design of the thermoelectric energy harvesting system .............................. 89 4.1.1 Strategy for ambient thermal energy harvesting ............................... 89 4.1.2 Thermoelectric device ..................................................................... 91 4.1.3 Phase change material ..................................................................... 95 4.2 Experimental study .................................................................................... 96 4.2.1 Fabrication of the prototype TEG system ......................................... 96 4.2.2 In lab test and results ....................................................................... 97 4.2.3 Test outside and results ...................................................................100 4.3 Modeling of the prototype system .............................................................102 6 / 180 4.3.1 Electrical analogy method ..............................................................102 4.3.2 Finite element method ....................................................................105 4.3.3 Simulation and results ....................................................................108 4.4 Sectional summary .................................................................................... 114 5. Solar energy harvesting through pyroelectric effect............................................. 115 5.1 Design of the pyroelectric energy harvesting system ................................. 115 5.2 Experimental study ................................................................................... 118 5.2.1 In lab test and results ...................................................................... 118 5.2.2 Test outside and results ...................................................................120 5.3 Modeling of the prototype system .............................................................124 5.3.1 Equivalent electrical model ............................................................124 5.3.2 Numerical simulation .....................................................................125 5.3.3 Results of the simulation ................................................................127 5.4 Sectional summary ....................................................................................130 6. Wind (or airfow) energy harvesting through piezoelectric effect .........................131 6.1 Design of the piezoelectric energy harvesting system ................................131 6.2 Experimental study ...................................................................................134 6.2.1 In lab test and results ......................................................................134 6.2.2 Test outside and resutls ...................................................................137 6.3 Modeling of a self-exctied energy harvester ..............................................139 6.3.1 Fluid structure interaction analysis with dynamic pressure ..............139 6.3.2 Lumped parameter model with SSHI technique ..............................143 6.4 Sectional summary ....................................................................................145 7. Typical application of thermoelectric generator in building .................................146 7.1 Architecture of the application ..................................................................146 7.2 Experimental study ...................................................................................148 7.2.1 Performance of an improved TEG ..................................................148 7.2.2 Configuration and performance of the self-powered system ............150 7.2.3 Configuration and performance of the PV with water cooling .........153 7.3 Sectional summary ....................................................................................155 8. General conclusion and perspective ....................................................................156 General conclusion .........................................................................................156 Perspective .....................................................................................................158 List of Publication ..................................................................................................160 References ..............................................................................................................162 List of figures .........................................................................................................172 List of tables ...........................................................................................................176 Appendix A ............................................................................................................177 Appendix B ............................................................................................................178 Appendix C ............................................................................................................179 7 / 180 Acknowledgement This thesis is a summary of my major scientific research in France between 2009 and 2011. It is supported by “Region Rhone-Alpes” through the project “PIVOTER”. I gratefully acknowledge in advance the directors of the “Region Rhone-Alpes” for their confidence. Besides, I would like to acknowledge in advance the two reviewers of this thesis Professor Jean-François Rouchon and Professor Christophe Goupil for their valuable suggestions on the improvement of my work in the PhD. Great acknowledgement also to the three examiners of my defense Orphée Cugat, Guillaume Foissac and Adrien Badel for their participation and patience. At the end of this PhD study which is also the start of another new journey in my life, I would like to express my deepest and heartfelt thanks to all these people below who helped me to progress in academics and to grown up personally. Thanks to my advisor Professor Amen Agbossou who helps me to distinguish scientific problem and engineer problem. He is encouraging, enlightened, full of imagination and able to make a research interesting. His patience and zealousness in his job give me a completely fresh comprehension of scientific research. He is kind to the people and his smile is always impressed. Thanks to my co-advisor Professor Zhihua Feng who opens the door of the magic world to me. His deep insight in physics and excellent capability of expression is admirable. He is diligent in work, religious in research, creative in design and persistence in pursuit of science. He is strict and thoughtful with student. His selfless attitude to the life as a researcher always moves me on when meeting with great challenges. Thanks to my co-advisor Professor Daniel Guyomar who provides me with the opportunity to study with Professor Amen Agbossou. His confidence makes me brave in improving my scientific career and in fulfilling my personal best. Thanks to the colleagues in this research Gael Sebald, Mathieu Cosnier, Anne-Cecile Grillet and Thierry Goldin. They helped a lot in this study. Thanks to all the members in LOCIE, Université de Savoie with special gratitude for Professor Lingai Luo (Director of LOCIE). They are always friendly and passional. Special thanks to the Chinese team! - Yilin Fan, Xiaofeng Guo, Hua Zhang, Xiangdi Huang, Hui Liu, Bin Cao, Yu Bai, Tong Zhang, Limin Wang. They make my life in France full of laugh and joy. Thanks to my parents and all my relatives for their constant love and confidence in me. Finally, thanks to my wife Wenxiang Han. She is a good partner in my life and research. She has been always loving, supportive and understanding. 8 / 180 Abstract The aim of this study is to investigate ambient energy harvesting with coupling effect of piezoelectric, pyroelectric and thermoelectric materials. Three basic problems lie in an energy harvesting process with these coupling effects: (i) design and optimize a structure which is able to accumulate the micro-power from the energy source and transform it into the favorable loading on the active material, (ii) improve the energy conversion efficiency according to the suitable choice of material properties and (iii) develop an energy harvesting circuit which is able to improve the energy conversion efficiency. The developed approach was experimental and numerical studies at first in laboratory conditions for deep understanding of energy harvesting process and then in outside conditions for verifying actual performance of the realized devices. On the thermoelectric coupling effect, a new method of harvesting solar and ambient energy is presented. The method is based on thermoelectric and both sensitive and latent heat effects for energy harvesting day and night. A maximum power generation of 1Wm-2 is achieved with thermoelectric material (Bi2Te3). On the pyroelectric effect, the inherent fluctuation with time of the natural wind speed was used. A maximum time variation of temperature of 16°C/minute was achieved which corresponds to an average power of 0.6mWm-2. On the piezoelectric effect, a mechanical structure which is enlightened from harmonica was developed uploads/Litterature/ zhang-2011-archivage.pdf
Documents similaires










-
34
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Jul 25, 2021
- Catégorie Literature / Litté...
- Langue French
- Taille du fichier 8.6501MB