Mécanique quantique La mécanique quantique est la branche de la physique théori

Mécanique quantique La mécanique quantique est la branche de la physique théorique qui étudie et décrit les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée au début du XXe siècle par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales. Elle se montra féconde en résultats et en applications diverses : elle permit notamment d'élucider le mystère de la structure de l'atome, et plus globalement elle s'avéra être le cadre général de description du comportement des particules élémentaires, jusqu'à constituer le socle de la physique moderne. La mécanique quantique comporte de profondes difficultés conceptuelles. Si son formalisme mathématique est d'une efficacité inégalée , son interprétation ne fait pas l'unanimité dans la communauté scientifique . Parmi ses concepts, on peut citer la dualité onde corpuscule, la superposition quantique, l'intrication quantique ou encore la non-localité. L'expression physique quantique désigne le corpus théorique plus étendu qui s'appuie sur la mécanique quantique pour décrire un ensemble plus vaste de phénomènes, dont les interactions fondamentales dans le modèle standard. Un quantomécanicien est un spécialiste de mécanique quantique et un quantochimiste un spécialiste de chimie quantique . 1 2 3 Panorama général Lois de probabilités Existence des quanta Histoire Notions fondamentales État quantique Principe de superposition Règle de Born Grandeur observable Opérateurs unitaires Cas général Équation de Schrödinger Impulsion et moment cinétique Commutateur Fonction d'onde Matrice densité Exemples notables de problèmes quantiques Fermions et bosons Oscillateur harmonique Particule libre Effet tunnel Spin de l'électron Atome d'hydrogène Formulation de la mécanique quantique par intégrale de chemin Mécanique quantique et relativité Les inégalités de Heisenberg Inégalité position-impulsion Inégalité temps-énergie Intrication Téléportation quantique Liste des expériences Paradoxes Chat de Schrödinger Paradoxe EPR et expérience d'Alain Aspect Expérience de Marlan Scully Contrafactualité Du monde quantique au monde classique Applications Notes et références Annexes Bibliographie Ouvrages de vulgarisation Ouvrages de philosophie Ouvrages d'initiation Ouvrages destinés à l'apprentissage de la discipline Prévention des abus d'interprétations Aspects historiques Sur la décohérence Bibliothèque virtuelle Cours Lectures complémentaires Articles connexes Concepts fondamentaux Interprétation Problèmes, paradoxes et expériences Mathématiques Mécanique quantique relativiste Informatique quantique Vide quantique Divers Voir aussi Liens externes Sommaire Le congrès Solvay de 1927 a réuni les meilleurs physiciens de l'époque, au nombre desquels figurent la plupart des fondateurs de la mécanique quantique. Sur la téléportation quantique Globalement, la mécanique quantique se démarque de la physique classique par deux aspects : des règles différentes quant à l'additivité des probabilités , et l'existence de grandeurs physiques ne pouvant se manifester que par multiples de quantités fixes, appelés quanta, qui donnent leur nom à la théorie. Dans la conception classique des lois de probabilité, lorsqu'un événement peut se produire de deux façons différentes incompatibles l'une avec l'autre, les probabilités s'additionnent. Tel n'est pas le cas en mécanique quantique, où la probabilité d'un évènement est liée à une amplitude de probabilité susceptible d'interférer, y compris de façon destructive. Cette propriété est illustrée par l'expérience des fentes de Young, considérée notamment par Richard Feynman comme la plus emblématique du comportement quantique de la matière. Dans son cours de mécanique quantique, Feynman consacre un long chapitre à son analyse détaillée. Cette expérience illustre aussi le concept de dualité onde-corpuscule, à la base de l'interprétation standard de la théorie. On considère actuellement qu'aux échelles macroscopiques, l'apparente non-observation de ce comportement probabiliste s'explique par un phénomène appelé décohérence. Cependant d'autres explications existent, mais aucune ne fait l'unanimité : elles relèvent essentiellement de différences dans l'interprétation de la mécanique quantique. La mécanique quantique tire son nom de l'existence de grandeurs ne pouvant se manifester que par multiples de quantités fixes, souvent liées à la constante découverte par Max Planck. Ces grandeurs sont par exemple l'énergie ou le moment cinétique des particules. L'illustration la plus manifeste et la plus riche en conséquences de ce phénomène se trouve probablement dans la structure de l'atome et plus précisément dans l'organisation des électrons autour du noyau. En effet, les électrons se répartissent en occupant les places laissées libres par les valeurs possibles des nombres quantiques liés à leur énergie et leur moment cinétique. Cette organisation permet d'expliquer le comportement chimique et spectroscopique des éléments naturels. L'existence des quanta n'est pas une propriété fondamentale de la mécanique quantique, car elle peut être démontrée à partir d'autres considérations, notamment relatives à la règle sur l'additivité des probabilités mentionnée plus haut. Cependant, elle constitue certainement l'un des aspects les plus caractéristiques de la mécanique quantique, car c'est elle qui se manifeste le plus aisément dans les équations, et c'est historiquement par cet aspect que la mécanique quantique fut découverte. C'est incontestablement la résolution du problème du rayonnement du corps noir qui a marqué le début de la mécanique quantique. Au début du XXe siècle, Max Planck résout en effet ce problème en prenant l'hypothèse que l'énergie des atomes ne peut s'échanger que par multiples de quantités proportionnelles à la fréquence du rayonnement, selon la formule désormais célèbre : En confrontant son modèle aux données expérimentales, il obtient alors facilement une valeur numérique précise pour la constante h, depuis appelée constante de Planck et reconnue par la suite comme l'une des trois constantes fondamentales. Cette idée de grandeurs énergétiques ne pouvant s'échanger que de façon discrète inspirera alors de nombreux physiciens, comme Niels Bohr, qui s'en serviront notamment pour développer un modèle de la structure de l'atome. Plus généralement, ce fut le début de ce qu'on appela la théorie des quanta. Peu de temps après la découverte de Planck, Albert Einstein, à la suite notamment de son analyse de l'effet photo-électrique, suggère que la quantité hν est l'énergie d'une particule électromagnétique qui sera plus tard appelée photon. Cette réintroduction d'une conception corpusculaire de la lumière va inciter Louis de Broglie à proposer une relation analogue à celle de Planck, mais pour la quantité de mouvement : où est un vecteur d'onde. est la constante de Planck dite réduite. Ce faisant, il est l'instigateur de la dualité onde corpuscule qui incitera certains physiciens à rechercher une description ondulatoire de la matière. Parmi ceux-ci, Erwin Schrödinger y parvient et obtient une équation différentielle, portant désormais son nom, qui permet de décrire précisément l'évolution quantique d'une particule. Cette équation prouva rapidement sa pertinence dans sa description du modèle de l'atome d'hydrogène. Parallèlement, Werner Heisenberg avait développé une approche radicalement différente, qui s'appuyait sur des calculs matriciels directement inspirés de la mécanique analytique classique. Ces deux approches, ainsi que la confusion concernant le concept de dualité onde corpuscule, donnaient à la mécanique quantique naissante un besoin de clarification. Cette clarification intervint grâce aux travaux d'un physicien britannique, Paul Adrien Dirac. Dans un livre publié en 1930, intitulé Principes de la mécanique quantique, Dirac montre que les deux approches, celles de Schrödinger et d'Heisenberg, ne sont en fait que deux représentations d'une même algèbre linéaire. Dans cet ouvrage fondateur, Dirac extrait les lois proprement quantiques, en faisant abstraction des lois déjà imposées par la physique classique. Dirac donne alors une représentation axiomatique de la mécanique quantique, probablement inspirée des développements mathématiques de l'époque, notamment en ce qui concerne la géométrie projective . Panorama général 4 Lois de probabilités Existence des quanta Histoire 5 6 Le travail de Dirac avait été précédé quelques années auparavant par celui de John Von Neumann, mais l'ouvrage de Von Neumann était beaucoup plus rigoureux sur le plan mathématique, de telle sorte qu'il plaisait surtout aux mathématiciens. Les physiciens lui ont préféré celui de Dirac et c'est donc essentiellement l'ouvrage de Dirac qui a laissé une postérité. Dans la préface d'une ré-édition de son livre, Von Neumann mentionne l'ouvrage de Dirac et le décrit comme « une représentation de la mécanique quantique qui peut à peine être surpassée en termes de brièveté et d'élégance », mais ajoute tout de même dans le paragraphe suivant que sa méthode « ne satisfait en aucune façon les exigences de la rigueur mathématique » . Paul Dirac dégage les propriétés essentiellement quantiques des phénomènes physiques et les exprime à travers quelques postulats et concepts qui sont à la base de la mécanique quantique. Elles sont présentées ici d'une façon moins formelle, plus propice à une compréhension générale. L'article détaillé présente leur formulation de façon plus rigoureuse mais aussi plus abstraite. En substance, un état quantique est ce qui quantifie ce que l'on peut savoir d'un système quantique. Il permet de calculer les probabilités et les valeurs moyennes mesurées des observables (position, quantité de mouvement, etc.). Les états quantiques sont décrits mathématiquement par vecteur d'état dans un espace de Hilbert, représenté par une notation dédiée introduite par Dirac, dite notation bra-ket . Un état quantique s'écrit alors sous la forme . L'évolution dans le temps de ce vecteur d'état est décrit mathématiquement par la fonction d'onde , gouvernée par l'équation de Schrödinger. Ces deux représentations concernent les états purs, c'est-à-dire les états de systèmes quantiques simples idéalisés et isolés, où chaque composante peut être quantifiée uploads/Philosophie/ mecanique-quantique 2 .pdf

  • 16
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager