Bulletin officiel spécial n° 8 du 13 octobre 2011 © Ministère de l'éducation na
Bulletin officiel spécial n° 8 du 13 octobre 2011 © Ministère de l'éducation nationale, de la jeunesse et de la vie associative > www.education.gouv.fr 1 / 15 Annexe Programme de l’enseignement spécifique et de spécialité de physique-chimie Classe terminale de la série scientifique ENSEIGNEMENT SPÉCIFIQUE Présentation Dans une société où des informations de tous ordres arrivent dans l’immédiateté et de toutes parts, la priorité est donnée à la formation des esprits pour transformer cette information en une connaissance. L’enseignant doit être un accompagnateur de chaque élève dans l’acquisition de compétences qui ne peuvent être opérationnelles sans connaissances, qui sont à la fois la base et l’objectif de la didactique, notamment scientifique. Formation des esprits et acquisition de connaissances sont deux facettes indissociables de l’activité éducative. Ainsi le programme de physique-chimie de terminale S se situe dans le prolongement de celui de première S en approfondissant la formation à la démarche scientifique. Il permet de mieux installer les compétences déjà rencontrées, de les compléter et de faire acquérir des connaissances nouvelles. Comme pour la première S, une rédaction volontairement allégée des contenus, notions et compétences a été privilégiée, sans pour autant altérer la lisibilité et la précision des exigences telles qu’elles sont attendues en fin d’année scolaire et exigibles pour le baccalauréat. Deux compétences occupent une place centrale en terminale : « extraire » et « exploiter » des informations ; elles seront mises en œuvre fréquemment, notamment dans les situations identifiées dans la colonne de droite du programme, en respectant l’esprit de la démarche scientifique. Les activités proposées aux élèves au sujet de la compétence « extraire » et leurs connaissances acquises doivent les conduire à s’interroger de manière critique sur la valeur scientifique des informations, sur la pertinence de leur prise en compte, et à choisir de façon argumentée ce qui est à retenir dans des ensembles où l’information est souvent surabondante et parfois erronée, où la connaissance objective et rationnelle doit être distinguée de l’opinion et de la croyance. Les supports d’informations proposés aux élèves seront multiples et diversifiés : textes de vulgarisation et textes scientifiques en français et éventuellement en langue étrangère, tableaux de données, constructions graphiques, vidéos, signaux délivrés par des capteurs, spectres, modèles moléculaires, expériences réalisées ou simulées, etc. L’exploitation sera conduite en passant par l’étape d’identification des grandeurs physiques ou chimiques pertinentes et par celle de modélisation. Cette formalisation pourra conduire à l’établissement des équations du modèle puis à leur traitement mathématique, numérique ou graphique. L’élève est ainsi amené à raisonner avec méthode et à mettre en œuvre avec rigueur l’ensemble des étapes qui lui permettent de trouver la ou les solution(s) au problème posé. Le professeur aura cependant à l’esprit que le recours à des outils mathématiques n’est pas le but premier de la formation de l’élève en physique-chimie, même si cela peut être parfois nécessaire pour conduire une étude à son terme. Dans certains cas, le professeur utilisera des méthodes de résolutions graphique ou numérique, pratiques de plus en plus fréquentes en raison de la complexité des systèmes étudiés. Ce sera aussi l’occasion de souligner que les travaux de recherche sont souvent conduits par des équipes pluridisciplinaires. Le professeur fera aussi appel à des exploitations qualitatives conduites avec rigueur. L’emploi de celles-ci s’avère particulièrement opportun dans le cas où elles permettent de dégager directement le sens de l’étude que pourrait masquer un développement calculatoire. Ainsi, l’analyse dimensionnelle, l’examen préalable des différents phénomènes en cause, la comparaison d’ordres de grandeur peuvent permettre une simplification efficace du cadre conceptuel de la situation et fournir une résolution élégante, rapide, à un problème a priori complexe. Familiariser ainsi l’élève à pratiquer des raisonnements qualitatifs, à savoir faire de la physique et de la chimie « avec les mains », c’est aussi l’habituer à savoir communiquer en tant que scientifique avec des non-scientifiques. Le résultat obtenu à l’issue d’une démarche de résolution sera l’objet d’une attention particulière. L’analyse critique d’un résultat permet en effet de lui donner davantage de sens, notamment lorsque l’on compare les effets attendus résultant de la modification d’un paramètre et ceux effectivement observés. L’exploitation d’un résultat apparaît comme un moyen de validation des hypothèses faites lors de la modélisation mais aussi comme le point de départ d’un réinvestissement : il s’agit de la charnière entre les démarches « comprendre » et « agir » que soulignent les programmes. Les professeurs, s’ils souhaitent bénéficier de ressources didactiques, de situations et de questionnements, peuvent se reporter aux sites ministériels sur Éduscol : http://www.eduscol.education.fr/cid46456/ressources-pour-le-college- et-le-lycee.html où ils trouveront des ressources pour la classe terminale, qui n’ont cependant pas de valeur prescriptive. Il conviendra par ailleurs qu’ils s’appuient au mieux sur les acquis du collège et sur ceux des programmes de seconde et de première du lycée. Les compétences évaluées en fin de cycle terminal à l’occasion des épreuves du baccalauréat porteront principalement sur le programme de terminale sans exclure celles des programmes des classes de seconde et de première, notamment celles de nature expérimentale. Bulletin officiel spécial n° 8 du 13 octobre 2011 © Ministère de l'éducation nationale, de la jeunesse et de la vie associative > www.education.gouv.fr 2 / 15 Tout en poursuivant l’effort en cours de contextualisation de leur problématique, ces épreuves mettront ainsi l’accent sur l’acquisition de la méthodologie scientifique. Pour les élèves de terminale, le baccalauréat n’est pas en effet une fin en soi, mais une étape, destinée à préparer les élèves aux études supérieures, en accompagnant et prolongeant la formation des esprits à la démarche scientifique. L’accent mis sur la méthodologie aura aussi notamment pour conséquence que les épreuves d’évaluation fourniront tous les éléments de savoir (formules, propriétés, données physicochimiques, schémas, etc.) nécessaires à leur résolution si cette dernière implique la mise en œuvre de compétences non exigibles car ne figurant pas dans la colonne de droite du programme. Les programmes de terminale de la série scientifique comme ceux de première s’articulent autour des grandes phases de la démarche scientifique : observer, comprendre, agir et s’appuient sur des entrées porteuses et modernes introduites à partir de questionnements. Observer : ondes et matière La partie « observation » est étendue à l’ensemble du spectre des ondes électromagnétiques et aux ondes dans la matière, ainsi qu’aux particules. Ondes et particules Des sources « froides » (rayonnement cosmologique, nuages interstellaires, corps solides, etc.) aux plus « chaudes » (étoiles et sources associées), en passant par les sources composites comme les galaxies, l’Univers est empli d’émetteurs électromagnétiques sur tout le spectre, qui interagissent avec l’atmosphère terrestre. Cette interaction, qui dépend du domaine spectral considéré, conditionne la nature de l’instrument d’observation, son support technologique et son altitude (du sol à l’extérieur de l’atmosphère). L’Homme sait également fabriquer des sources de rayonnement sur l’ensemble du spectre, dans le visible, mais aussi dans les domaines radio, infrarouge et ultraviolet notamment. Une étude documentaire, non exhaustive, des sources de rayonnement, éventuellement absorbé par l’atmosphère, sera menée, ainsi que sur les ondes de matière à l’œuvre sur Terre, avec une tonalité particulière mise sur les ondes sonores, dont un prolongement pourra être trouvé dans l’enseignement de spécialité. Les photons associés aux ondes électromagnétiques, les particules élémentaires (électrons, protons, neutrinos, etc.), ou composites (noyaux, atomes, molécules) sont, à côté des ondes électromagnétiques et mécaniques, des supports précieux d’information. Parmi l’ensemble des sources d’ondes et de particules, un choix est possible d’étude plus particulière ainsi que sur un dispositif d’observation donné. Cette faculté de choix porte également sur l’étude expérimentale obligatoire d’un dispositif de détection. Caractéristiques et propriétés des ondes Il s’agit de savoir décrire les ondes, définir et utiliser les grandeurs physiques associées. La diffraction d’ondes dans tous les domaines du spectre est soulignée, en particulier dans ses conséquences sur l’observation. L’étude des interférences met l’accent sur les conditions d’interférences constructives et destructives pour les ondes monochromatiques. Comme la diffraction et les interférences, l’effet Doppler se prête bien à exploitation expérimentale. Son étude sera étendue à l’investigation en astrophysique (mouvements des corps, détections indirectes et planètes extrasolaires, expansion de l’Univers) et à la vélocimétrie. Analyse spectrale La spectroscopie est un moyen privilégié d’étude des propriétés physicochimiques (température, composition) des sources de rayonnement, des objets astronomiques aux sources colorées fabriquées par l’Homme. Elle est également un instrument irremplaçable d’analyse des espèces chimiques d’origine variée, notamment issues du domaine du vivant, qu’il s’agisse des spectres UV-visible, IR ou RMN. C’est principalement cet aspect qui donnera lieu à l’enseignement de terminale. Sans aborder les règles qui régissent les transferts d’énergie dans les molécules, il s’agira d’exploiter des spectres de natures différentes à l’aide de tables et de logiciels, en vue de les mettre en relation avec la structure des molécules. En outre, il s’agira de choisir une espèce colorée pour conduire une démarche expérimentale destinée à la caractériser. Comme dans l’ensemble du programme, l’enseignant n’est pas tenu à une lecture séquentielle dans cette partie « Observer » et peut la traiter dans l’ordre de son choix pour les trois thèmes. Il peut également, comme pour le programme de première, choisir de faire un détour uploads/Philosophie/ programme-de-physique-chimie-ts.pdf
Documents similaires










-
28
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Mar 15, 2022
- Catégorie Philosophy / Philo...
- Langue French
- Taille du fichier 0.2714MB