L LY YC CE EE E D DE E S SB BE EI IT TL LA A A.S : 2009-2010 Page : 1 Exercices
L LY YC CE EE E D DE E S SB BE EI IT TL LA A A.S : 2009-2010 Page : 1 Exercices de probabilité Exercice n°1 Un récipient contient un gaz constitué de deux sortes de particules : 75 % de particules A et 25 % de particules B. Les particules sont projetées sur une cible formée de deux compartiments K1 et K2. L’expérience est modélisée de la manière suivante : - Une particule au hasard parmi les particules de type A entre dans K1 avec la probabilité 1 3 et dans K2 avec la probabilité 2 3 . - Une particule au hasard parmi les particules de type B entre dans chacun des compartiments avec la probabilité 1 2 . Partie A 1. Soit une particule au hasard. Déterminer la probabilité de chacun des événements suivants : A1 : « la particule isolée est de type A et elle entre dans K1 » ; A2 : « la particule isolée est de type A et elle entre dans K2 » ; B1 : « la particule isolée est de type B et elle entre dans K1 » ; B2 : « la particule isolée est de type B et elle entre dans K2 » ; C1 : « la particule entre dans K1 » ; C2 : « la particule entre dans K2 ». 2. On procède 5 fois de suite et de façon indépendante à l’épreuve décrite en introduction. Le nombre de particules étant très grand, on admettra que les proportions 75 % et 25 % restent constantes. Calculer la probabilité de l’événement E suivant : « il y a exactement deux particules dans K2 ». Partie B Un récipient contient le gaz décrit précédemment. Les particules A sont radioactives et se transforment spontanément en particules B. On note ( ) p t la proportion de particules A dans le gaz. Ainsi, à l’instant 0 t= , on a (0) 0,75 p = . Plus généralement, si t est exprimé en années, on a ( ) 0,75 t p t e λ − = L LY YC CE EE E D DE E S SB BE EI IT TL LA A A.S : 2009-2010 Page : 2 où λ est une constante réelle. La demi-vie1 des particules de type A est égale à 5730 ans. 1. Calculer λ ; on prendra une valeur approchée à 5 10− près par défaut. 2. Au bout de combien d’années, 10 % des particules de type A se seront-elles transformées en particules de type B ? 3. Déterminer la valeur de t pour laquelle il y aura autant de particules de type A que de particules de type B (on arrondira à l’unité). Exercice n°2 Un joueur dispose d’un dé cubique bien équilibré dont les faces sont numérotées de 1 à 6, et de trois urnes, U1, U2 et U3 contenant chacune k boules, où k désigne un entier naturel supérieur ou égal à 3. Il y a trois boules noires dans U1, deux boules noires dans U2 et une boule noire dans U3. Toutes les autres boules dans les urnes sont blanches. Les boules sont indiscernables au toucher. Une partie se déroule de la manière suivante : le joueur lance le dé, * s’il obtient le numéro 1, il prend au hasard une boule dans l’urne U1, note sa couleur et la remet dans U1 ; * s’il obtient un multiple de 3, il prend au hasard une boule dans U2, note sa couleur et la remet dans U2 ; * si le numéro amené par le dé n’est ni 1 ni un multiple de 3, il prend au hasard une boule dans U3, note sa couleur et la remet dans U3. On désigne par A, B, C et N les événements suivants : A : « Le dé amène le numéro 1 ». B : « Le dé amène un multiple de 3 ». C : « Le dé amène un numéro qui n’est ni 1 ni un multiple de 3 ». N : « La boule tirée est noire ». 1. Le joueur joue une partie. 1 Temps au bout duquel le nombre de particules restantes est la moitié du nombre initial. Dhaouadi Nejib http://www.sigmaths.tk Dhaouadi Nejib http://www.sigmaths.tk L LY YC CE EE E D DE E S SB BE EI IT TL LA A A.S : 2009-2010 Page : 3 a. Montrer que la probabilité qu’il obtienne une boule noire est égale à 5 3k . b. Calculer la probabilité que le dé ait amené le 1 sachant que la boule tirée est noire. c. Déterminer k pour que la probabilité d’obtenir une boule noire soit supérieure à 1 2 . d. Déterminer k pour que la probabilité d’obtenir une boule noire soit égale à 1 30 . 2. Dans cette question, k est choisi pour que la probabilité d’obtenir une boule noire en jouant une partie soit égale à 1 30 . Le joueur fait 20 parties, indépendantes les unes des autres. Calculer, sous forme exacte puis arrondie à 10−3 près la probabilité qu’il obtienne au moins une fois une boule noire. Exercice n°3 On dispose de deux urnes U1 et U2 contenant des boules indiscernables au toucher. U1 contient n boules blanches et 3 boules noires (n est un nombre entier supérieur ou égal à 1). U2 contient deux boules blanches et une boule noire. On tire une boule au hasard de U1 et on la met dans U2, puis on tire au hasard une boule de U2 et on la met dans U1 ; l'ensemble des ces opérations constitue une épreuve. 1. Construire l'arbre pondéré de cette expérience aléatoire. 2. On considère l'événement A : "Après l'épreuve, les urnes se retrouvent chacune dans leur configuration de départ". 2. a. Démontrer que la probabilité p(A) de l'événement A peut s'écrire : 3 2 (A) 4 3 n p n + = + 2. b. Déterminer la limite de p(A) lorsque n tend vers +∞. 3. On considère l'événement B : "Après l'épreuve, l'urne U2 contient une seule boule blanche". L LY YC CE EE E D DE E S SB BE EI IT TL LA A A.S : 2009-2010 Page : 4 Calculer p(B). 4. Un joueur mise 20 francs et effectue une épreuve. A l'issue de cette épreuve, on compte les boules blanches dans U2. - Si U2 contient 1 seule boule blanche, le joueur reçoit 2n francs - Si U2 contient 2 boules blanches, le joueur reçoit n francs ; - Si U2 contient 3 boules blanches, le joueur ne reçoit rien. a. Expliquer pourquoi le joueur n'a aucun intérêt à jouer tant que n ne dépasse pas 10. Dans la suite, on considère n > 10, et on introduit la variable aléatoire X qui prend pour valeur les gains algébriques du joueur (par exemple, si, après l'épreuve, l'urne U2 contient une seule boule blanche, X = 2n – 20). b. Déterminer la loi de probabilité de X. c. Calculer l'espérance mathématique de X. d. On dit que le jeu est favorable au joueur si et seulement si l'espérance mathématique est strictement positive. Montrer qu'il en est ainsi dès que l'urne U1 contient au moins 25 boules blanches. Exercice n°4 On s’intéresse à la durée de vie, exprimée en semaines, d’un composant électronique. On modélise cette situation par une loi de probabilité p de durée de vie sans vieillissement définie sur l’intervalle [0 ; +∞[ : la probabilité que le composant ne soit plus en état de marche au bout de t semaines est 0 ([0 ; [) t x p t e dx λ λ − =∫ . Une étude statistique, montrant qu’environ 50 % d’un lot important de ces composants sont encore en état de marche au bout de 200 semaines, permet de poser ([0 ; 200[) 0,5 p = . 1. Montrer que ln2 200 λ = . 2. Quelle est la probabilité qu’un de ces composants pris au hasard ait une durée de vie supérieure à 300 semaines ? On donnera la valeur exacte et une valeur approchée décimale au centième près. 3. On admet que la durée de vie moyenne m d de ces composants est la limite quand A tend vers +∞ de 0 A x xe dx λ λ − ∫ . Dhaouadi Nejib http://www.sigmaths.tk Dhaouadi Nejib http://www.sigmaths.tk L LY YC CE EE E D DE E S SB BE EI IT TL LA A A.S : 2009-2010 Page : 5 a. Montrer que 0 1 A A A x Ae e xe dx λ λ λ λ λ λ − − − − − + = ∫ . b. En déduire m d ; on donnera la valeur exacte et une valeur approchée décimale à la semaine près. Exercice n°5 Le bus passe toutes les quinze minutes à un arrêt précis. Un usager se présente à cet arrêt entre 7 heures et 7 heures 30. La variable aléatoire uploads/Sports/ acfrogav9-uur0kgm07-hdfo6qjskzhmmrxqwp45o1iupr2odt-i34-opumgwglxx0bx28di8-qiby7shr8jnfu4dcw-d87q7gvvzqmrzy5iya9g5lhtleja27szrecu-mzcqs5si27pop9tkvor.pdf
Documents similaires










-
45
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Nov 03, 2022
- Catégorie Sports
- Langue French
- Taille du fichier 0.1514MB