Bibliographie Mémoire de Thèse Page 137 Collins, A., & Loftus, E. (1975). A Spr

Bibliographie Mémoire de Thèse Page 137 Collins, A., & Loftus, E. (1975). A Spreading Activation Theory of Semantic Processing. Psychological Review , 407-428. Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant colonies. Proceedings of the First European Conference on Artificial Life, (pp. 134-142). Paris, France. Cristea, A., & de Mooij, A. (2003). LAOS: Layered WWW AHS Authoring Model and their corresponding Algebraic Operators. WWW 2003 Conference. ACM. De Bra, P., & Calvi, L. (1998). AHA! an open adaptive hypermedia architecture. Hypermedia, 115-139. De Bra, P., Aerts, A., Smits, D., & Stash, N. (2002). AHA! Version 2.0, More Adaptation Flexibility for Authors. World Conference on e-Learning in Corporate, Government, Healthcare and Higher Education. Montreal, Canada. De Bra, P., Houben, G.-J., & Wu, H. (1999). AHAM: A dexter-based reference model for adaptive hypermedia. ACMConference on Hypertext and Hypermedia: Returning to our Diverse Roots, 147-156. De Bra, P., Wu, H., & Houben, G.-J. (2000). Supporting user adaptation in adaptive hypermedia applications. InfWet'00 Conference. Degemmis, M., Lops, P., & Semeraro, G. (2007). A Content-collaborative Recommender that ExploitsWordNet- based User Profiles for Neighborhood Formation. User Modeling and User- Adapted Interaction: The Journal of Personalization Research (UMUAI), 217-255 . Deshpande, M., & Karypis, G. (2004). Item-based top-N recommendation algorithms. ACM Transaction on Information Systems, 143-177. DMOZ open directory project. (n.d.). Retrieved from http://www.dmoz.org/ Dueck, G., & Scheuer, T. (1990). Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 161-175. Eirinaki, M., Vazirgiannis, M., & Varlamis, I. (2003). SEWeP: Using Site Semantics and a Taxonomy to enhance the Web Personalization Process. Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp. 99-108). Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (pp. 721-741). Glover, F. (1986). Furture paths for integer programming and links to artificial intelligence. Computers and Operations Research, 533-549. Goldberg, D., Nichols, D., Oki, B., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Commun. ACM , 61-70. Gondran, M., & Minoux, M. (1985). Graphes et algorithmes. Editions Eyrolles. Grcar, M., Fortuna, B., Mladenic, D., & Grobelnik, M. (2006). k-NN versus SVM in the collaborative filtering framework. Data Science and Classification, 251-260. Gruber, T. R. (1993). Toward principles for the design of ontologies used for knowledge sharing. International Workshop on Formal Ontology. Padova, Italy. Halasz, F., & Schwartz, M. (1990). The dexter reference model. NIST Hypertext Standardization Workshop. Page 138 Romain Picot-Clémente Hayes, P. (2004). RDF Semantics. W3C. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/. Henze, N. (2000). Adaptive hyperbooks: Adaptation for project-based learning resources. University of Hannover. Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and Evaluating Choices in a Virtual Community of Use. Human Factors in Computing Systems. Hofmann, T. (2003). Collaborative filtering via Gaussian probabilistic latent semantic analysis. 26th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval (pp. 259-266). New York, NY, USA: ACM. Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press. Ikeda, M. (1998). Ontology as Theoretical Foundations of Knowledge Engineering. J. Jpn. Soc. for Artificial intelligence, 13, 11-13. Jacobs, I., & Walsh, N. (2004). Architecture of the World Wide Web. W3C. http://www.w3.org/TR/webarch/. Jannach, D. (2006). Finding preferred query relaxations in content-based recommenders. 3rd International IEEE Conference on Intelligent Systems, (pp. 355-360). Joachims, T., Freitag, D., & Mitchell, T. (1997). Web Watcher: A Tour Guide for the World Wide Web. 15th International Joint Conference on Artificial Intelligence, (pp. 770-777). Kamba, T., Sakagami, H., & Koseki, Y. (2007). Antagonomy: A Personalized Newspaper on the World Wide Web. Int’l J. Human-Computer Studies. Karp., R. M. (1972). Reducibility among combinatorial. Complexity of Computer Computations, 85-103. Koch, N., & Wirsing, M. (2002). The Munich Reference Model for Adaptive Hypermedia Applications. 2nd International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, (pp. 213-222). Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., & Riedl, J. (1997). GroupLens: applying collaborative filtering to usenet news. Communications of the ACM, 77-87. Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collaborative filtering model. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (pp. 426-434). New York, NY, USA: ACM. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. IEEE Computer, (pp. 30-37). Lagoudakis, M. (1996). The 0-1 knapsack problem: An introductory survey. University of Southwestern Louisiana: The Center for Advanced Computer Studies. Liberman, H. (1995). Letizia: An Agent that Assists Web Browsing. International Joint Conference on Artificial Intelligence (IJCAI-95) (pp. 924-929). Montreal, Canada: Morgan Kaufmann publishers Inc. Lilien, G., Kotler, P., & Moorthy, K. (1992). Marketing Models. Prentice Hall. Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing , 76-80. Magnini, B., & Strapparava, C. (2000). Experiments in Word Domain Disambiguation for Parallel Texts. SIGLEX Workshop on Word Senses and Multi-linguality. Hong-Kong. Bibliographie Mémoire de Thèse Page 139 Magnini, B., & Strapparava, C. (2001). Improving User Modelling with Content-based Techniques. 8th International Conference of User Modeling, (pp. 74-83). Mahmood, T., & Ricci, F. (2009). Improving recommender systems with adaptive conversational strategies. Hypertext, 73-82. Mak, H., Koprinska, I., & Poon, J. (2003). INTIMATE: A Web-Based Movie Recommender Using Text Categorization. IEEE/WIC International Conference on Web Intelligence (pp. 602-605). IEEE Computer Society . Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer implementations. New York, NY, USA: John Wiley & Sons. McSherry, F., & Mironov, I. (2009). Differentially private recommender systems: building privacy into the net. 15th ACM SIGKDD international conference on Knowledge discovery and data mining, (pp. 627-636). New York, USA. Melville, P., Mooney, R., & Nagarajan, R. (2002). Content-Boosted Collaborative Filtering for Improved Recommendations. Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI-02) (pp. 187-192). Menlo Parc, CA, USA: AAAI Press. Metropolis, N., Rosenbluth, M., Rosenbluth, A., Teller, A., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, p. 1087-1091. Middleton, S., Alani, H., Shadbolt, N., & De Roure, D. (2002). Exploiting synergy between ontologies and recommender systems. WWW international workshop on the semantic web. Maui, HW, USA. Middleton, S., Shadbolt, N., & De Roure, D. (2004). Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems, 54-88. Miller, B. N., Albert, I., Lam, S., Konstan, J., & Riedl, J. (2003). MovieLens Unplugged: Experiences with an Occasionally Connected Recommender System. Intelligent User Interfaces. Minio, M., & Tasso, C. (1996). User Modeling for Information Filtering on INTERNET Services: Exploiting an Extended Version of the UMT Shell. UM96 Workshop on User Modeling for Information Filtering on the WWW. Kailua-Kona, Hawaii. Mladenic, D. (1999). Machine learning used by PersonalWebWatcher. ACAI-99 Workshop on Machine Learning and Intelligent Agents . Mladenic, D. (1999). Text-learning and Related Intelligent Agents: A Survey. IEEE Intelligent Systems , 44-54. Mooney, R., & Roy, L. (2000). Content-Based Book Recommending Using Learning for Text Categorization. 5th ACM Conference on Digital Libraries (pp. 195-204). New York, US, San Antonio: ACM Press. Moukas, A. (1997). Amalthaea Information Discovery and Filtering Using a Multiagent Evolving Ecosystem. Applied Artificial Intelligence , 437-457. Mukherjee, R., Jonsdottir, G., Sen, S., & Sarathi, P. (n.d.). MOVIES2GO: an Online Voting based Movie Recommender System. Fifth International Conference on Autonomous Agents (pp. 114-115). ACM Press. Murthi, B., & Sarkar, S. (2003). The Role of the Management Sciences in Research on Personalization. Management Science, 1344-1362. Netflix. (n.d.). Retrieved from www.netflix.com/ Nicholson, T. (1971). Optimization in industry. Optimization Techniques. Page 140 Romain Picot-Clémente Pandora Internet Radio. (n.d.). Retrieved from http://www.pandora.com Paterek, A. (2007). Improving regularized singular value decomposition for collaborative filtering. KDD Cup and Workshop. Pazzani, M. B. (2007). Content-Based Recommendation Systems. The Adaptive Web, 325-341. Pazzani, M., & Billsus, D. (1997). Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning, 313-331. Pazzani, M., Muramatsu, J., & Billsus, D. (1996). Syskill and Webert: Identifying Interesting Web Sites. Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference (pp. 54-61). Menlo Park: AAAI Press / MIT Press. Powell, M. J. (1981). Approximation Theory and Methods. Cambridge Univ. Press. Quillian, R. (1968). Semantic memory. Semantic information processing, 227-270. Razmerita, L. V. (2003). Modèle Utilisateur et Modélisation Utilisateur dans les Systèmes de Gestion des Connaissances: une Approche fondée sur les Ontologies. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien. Frommann- Holzboog, Stuttgart. Resnick, P., & Varian, H. (1997). Recommender systems. Communications of the ACM 40, 56-58. Resnick, P., Iakovou, N., Sushak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An Open Architecture for Collaborative Filtering of Netnews. Computer Supported Cooperative Work Conf. Rich, E. (1979). User Modeling via Stereotypes. Cognitive Science, 329-354. Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted Boltzmann machines for collaborative filtering. 24th international conference on Machine learning (pp. 791-798). New York, NY, USA: ACM. Salter, J., & Antonoupoulos, N. (2006). CinemaScreen Recommender Agent: Combining collaborative and content-based filtering. IEEE Intelligent Systems, 35-41. Salton, G. (1989). Automatic Text Processing. uploads/Litterature/ 137-pdfsam-these-a-picot-clemente-romain-2011 1 .pdf

  • 24
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager