Studium Mechatronik Trinational Formation Trinationale Mécatronique EXERCICES E
Studium Mechatronik Trinational Formation Trinationale Mécatronique EXERCICES ENERGIE CORRIGE.docx Page 1 EXERCICES ENERGIE CINETIQUE et POTENTIELLE ENERGIE CINETIQUE EXERCICE 1 Calculer l'énergie cinétique d'une voiture de masse 1,25 tonne roulant à la vitesse de 50 km.h-1. Calculer cette énergie si elle roule à 100 km.h-1. Quel est le rapport des énergies si la vitesse est doublée ? L’énergie cinétique d’une masse en translation est donnée par : 2 mV 2 1 Ec Réponse : A 50 km/h on a : J 120563 3600 1000 x 50 x 1250 x 5 , 0 mV 2 1 Ec 2 2 A 100 km/h on a : J 482253 3600 1000 x 100 x 1250 x 5 , 0 mV 2 1 Ec 2 2 Le rapport des énergies vaut 4 120563 482253 , c’est-à-dire que l’énergie est quadruplée lorsque la vitesse est doublée. De même elle serait multipliée par 9 lorsque la vitesse est triplée. 2 2 V 9 ) V 3 ( EXERCICE 2 Étudier le freinage d'une voiture : Une voiture de masse m = 800 kg roule à 60 km.h-1 sur une route horizontale. La conductrice freine et la voiture s'arrête. 1. Quelle est l'énergie cinétique initiale de la voiture? 2. Quelle est l'énergie perdue par la voiture lors de son arrêt ou quelle est la variation d’énergie cinétique entre le début et la fin du freinage? Comment est dissipée cette énergie? Réponses : 1 . J 111111 3600 1000 x 60 x 800 x 5 , 0 mV 2 1 Ec 2 2 2 . J 111111 3600 1000 x 60 x 800 x 5 , 0 0 initiale Ec finale Ec Ec 2 Cette énergie est dissipée sous forme de frottement puis évacuée sous forme de chaleur. ENERGIE POTENTIELLE ET CINETIQUE EXERCICE 3 L’expression littérale de l'énergie potentielle de pesanteur d’un objet est mgz Epp Avec z = hauteur de l’objet par rapport à l’origine de mesure ( le sol en général ) 1. Préciser la signification des termes et leur unité. Studium Mechatronik Trinational Formation Trinationale Mécatronique EXERCICES ENERGIE CORRIGE.docx Page 2 2. Lors d'une figure de freestyle, une kitesurfeuse de masse m = 50 kg réussit à s'élever à 7,0 m au-dessus de la mer. En prenant le niveau de la mer comme référence des énergies potentielles, calculer son énergie potentielle de pesanteur au point le plus haut de son saut. Réponses : 1. m=masse en kg g=accélération de la pesanteur z=hauteur de l’objet en m 2. J 5 , 3468 7 x 81 , 9 x 50 mgz Epp EXERCICE 4 Calculer une valeur de vitesse Une balle de golf de masse m = 45 g tombe en chute libre sans vitesse initiale d'une hauteur h = 10 m par rapport au sol, choisi comme référence des énergies potentielles de pesanteur. 1. Quelles sont les hypothèses du modèle de la chute libre? Que dire de l'énergie mécanique de la balle lors d'une chute libre? 2. Quelle est la diminution de l'énergie potentielle de pesanteur de la balle entre la hauteur h et le sol? 3. En déduire la variation d'énergie cinétique de la balle. 4. Calculer la valeur de la vitesse de la balle lorsqu'elle arrive au sol. Réponses : 1. On va négliger le frottement de l’air sur la balle. Il s’agit d’un mouvement uniformément accéléré sous l’effet de l’accélération de la pesanteur g L’énergie mécanique de la balle reste constante Em = Epp + Ec = Cte 2. J 41 , 4 10 x 81 , 9 x 10 . 45 h . g . m 0 . g . m initiale Epp finale Epp Epp 3 3. Au début de la chute l’énergie cinétique est nulle ( vitesse =0 ) et au niveau du sol elle est maximum. J 41 , 4 0 mV 2 1 initiale Ec finale Ec Ec 2 f 4. a) Au début de la chute Epp = m.g.h ⟹ Em = m.g.h Ec = 0 A la fin de la chute Epp = 0 ⟹ Em = 0,5 . m . Vf 2 Ec = 0,5 . m . Vf 2 L’énergie mécanique restant constante, on peut égaler les 2 termes : 2 f mV 2 1 h . g . m ⟹ s / m 14 10 . 81 , 9 . 2 h . g . 2 Vf On voit que la vitesse est indépendante de la masse de l’objet. b) A partir de la variation de l’énergie cinétique J 41 , 4 0 mV 2 1 initiale Ec finale Ec Ec 2 f ⟹ s / m 14 10 . 45 41 , 4 x 2 V 3 f Studium Mechatronik Trinational Formation Trinationale Mécatronique EXERCICES ENERGIE CORRIGE.docx Page 3 EXERCICE 5 Le 31 mars 2008, l'Australien Robbie Maddison a battu son propre record de saut en longueur à moto. Soit un tremplin incliné d'un angle = 27,0° par rapport à l'horizontale. On considère que Maddison a parcouru le tremplin AB avec une vitesse de valeur constante égale à 160 km.h-1. Au point B, il s'est envolé pour un saut d'une portée BC = 107 m. Entre B et C, toute force autre que le poids est supposée négligeable. On choisit l'altitude du point A comme référence des énergies potentielles de pesanteur. 1. Exprimer l'énergie mécanique du système {motard + moto} en fonction de la valeur de la vitesse V et de l'altitude y. 2. Calculer l'énergie cinétique du système au point A. 3. a. Exprimer l'altitude yB du point B en fonction de AB et de . b. En déduire l'expression de la variation d'énergie potentielle de pesanteur du système, lorsque le système passe du point A au point B. Calculer cette variation d'énergie. c. Comment évolue l'énergie mécanique du système lorsqu'il passe de A à B? Justifier la réponse. 4. Comment évolue l'énergie mécanique du système lorsqu'il passe de B à C? Justifier la réponse. 5. En déduire sa vitesse au point C. Données : • intensité de la pesanteur : g = 9,81 N.kg-1 ; • masse du système : m = 180 kg; • AB = 7,86m. Réponses : 1. L’énergie mécanique vaut : y . g . m mV 2 1 Epp Ec Em 2 2. J 177777 3600 1000 x 160 2 180 mV 2 1 Ec 2 3. a) sin . AB yB b) J 6301 27 sin 86 , 7 x 81 , 9 x 180 0 y . g . m initiale Epp finale Epp Epp c) Si la vitesse reste constante l’énergie cinétique reste inchangée. L’énergie potentielle passe de 0 à 6301 J quand le motard va de A à B. Donc l’énergie mécanique augmente : En B elle vaut : J 184078 6301 177777 Epp Ec EmB 4. On a C B y y et de ce fait l’énergie potentielle est la même. Si l’on néglige les forces de frottement de l’air, la vitesse en C sera identique à la vitesse en B. L’énergie cinétique en C sera la même qu’en B. Donc l’énergie mécanique en C sera la même qu’en B. J 184078 Em Em B C 5. h / km 160 V V B C Studium Mechatronik Trinational Formation Trinationale Mécatronique EXERCICES ENERGIE CORRIGE.docx Page 4 EXERCICE 6 Au curling, l’équipe qui a placé une de ses pierres le plus près du piton au centre de la cible remporte le bout et marque des points. Sachant qu’une pierre de curling pèse 20 kg, à quelle vitesse doit-elle être lancée pour s’arrêter sur le piton, situé à une distance de 28,35 m? On suppose que la trajectoire de la pierre est rectiligne et que la force de frottement entre la pierre et la glace est de 3,3 N. Réponse : 2 i mV 2 1 0 initiale Ec finale Ec Ec Cette variation d’énergie cinétique doit être égale au travail des forces de frottement. J 56 , 93 35 , 28 x 3 , 3 L . F ) F ( W Ec ext 56 , 93 mV 2 1 2 i ⟹ s / m 06 , 3 20 56 , 93 x 2 Vi EXERCICE 7 Une application importante de l’énergie potentielle gravitationnelle est le barrage hydroélectrique. On place une turbine uploads/s3/ exercices-energie-corrige-pdf.pdf
Documents similaires










-
30
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Aoû 18, 2021
- Catégorie Creative Arts / Ar...
- Langue French
- Taille du fichier 1.0920MB