HAL Id: tel-01823819 https://tel.archives-ouvertes.fr/tel-01823819 Submitted on

HAL Id: tel-01823819 https://tel.archives-ouvertes.fr/tel-01823819 Submitted on 26 Jun 2018 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. New membranes based on high performance polymers for proton exchange membrane fuel cells PEMFC Olesia Danyliv To cite this version: Olesia Danyliv. New membranes based on high performance polymers for proton exchange membrane fuel cells PEMFC. Other. Université Grenoble Alpes, 2015. English. ￿NNT : 2015GREAI026￿. ￿tel- 01823819￿ THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Spécialité : Matériaux, Mécanique, Génie Civil, Electrochimie Arrêté ministériel : 7 août 2006 Présentée par Olesia DANYLIV Thèse dirigée par Cristina IOJOIU et codirigée par Jean-Yves SANCHEZ préparée au sein du Laboratoire d’Electrochimie et Physico- Chimie des Matériaux et Interfaces (LEPMI) dans l'École Doctorale Ingénierie-matériaux mécanique énergétique environnement procédés production (IMEP-2) Nouvelles membranes à squelette haute performance pour les piles à combustible PEMFC Thèse soutenue publiquement le 24 juin 2015, devant le jury composé de : Mme Christel LABERTY-ROBERT Professeur, Université Pierre et Marie Curie, Paris Rapporteur M. Bruno AMEDURI DR1, Institut Charles Gerhardt, Montpellier Rapporteur M. Christophe COUTANCEAU Professeur, Université de Poitiers Examinateur Mme Sandrine LYONNARD Dr., CEA Grenoble Examinateur M. Lionel OGIER Dr., PME ERAS Labo Invité M. Jean-Yves SANCHEZ Professeur, INP Grenoble Co-directeur Mme Cristina IOJOIU CR, CNRS Directrice DISSERTATION To obtain the degree of DOCTOR FROM UNIVERSITY GRENOBLE ALPES Speciality: Materials, Mechanics, Civil Engineering, Electrochemistry Ministerial decree: 7 August 2006 Presented by Olesia DANYLIV Dissertation directed by Cristina IOJOIU and co-directed by Jean-Yves SANCHEZ Prepared in the Laboratory of Electrochemistry and Physical Chemistry of Materials and Interfaces (LEPMI) In the Doctoral School Engineering materials, Mechanics, Energy, Environment, Procedures, Production (IMEP-2) New membranes based on high performance polymers for fuel cells PEMFC Dissertation defended publicly on 24 June 2015, In front of the jury comprising of: Ms Christel LABERTY-ROBERT Professor, University of Pierre and Marie Curie, Paris Reviewer Mr Bruno AMEDURI DR1, Institute Charles Gerhardt, Montpellier Reviewer Mr Christophe COUTANCEAU Professor, University of Poitiers Examiner Ms Sandrine LYONNARD Dr., CEA Grenoble Examiner Mr Lionel OGIER Dr., SME ERAS Labo Guest Mr Jean-Yves SANCHEZ Professor, INP Grenoble Co-director Ms Cristina IOJOIU CR, CNRS Director v Abstract The dissertation presents production of three new monomers, bearing perfluorosulfonic acid chains, and novel ionomers thereafter. Two main families of proton conducting polymers are described here: random poly(arylene ether)s (PAEs) and poly(arylene ether sulfone)s (PAESs), both random and block-copolymers. Due to complexity of ionic interactions in a system ‘product-solvent’ and due to the main requirement of high purity for a monomer, much attention is paid to description of a protocol for production and purification of the ionic monomers. A number of polymerization reactions with different commercial non-ionic monomers are reported. Membranes were prepared from the polymers of high molecular weight (> 50 kDa) by casting-evaporation method from their solutions in dimethylacetamide (DMAc). The influence of production temperature is described briefly. The membranes in salt and protonated forms are extensively characterized in terms of thermo- mechanical properties. The synthesized materials exhibit: i) high transition temperatures, which allows utilization of these polymers at conditions of a fuel cell functioning; ii) phase separation phenomena, which suggests the materials to have morphology with distinct domains for proton conduction. Additionally, small angle scattering (SAS) is performed in order to verify the presence of a highly-organized structure and to understand more the character of the ionomers’ bulk morphology. Proton conductivity measurements show that not all of the synthesized series possess the outstanding performance in terms of this specific property. However, detailed discussion is proposed to reveal the ionomers’ difference between each other and to the reference material for the further improvement. vii Preface This doctoral dissertation was realized in October 2011 – March 2015 in the Laboratory of Electrochemistry and Physico-Chemistry of Materials and Interfaces (LEPMI), CNRS, UMR 5279. The current work is a part of a project NMHT with a SME ERAS Labo as a partner and as an employer of myself in terms of a scholarship CIFRE (October 2011 – October 2014). The originality and the challenge of this work consider the whole cycle of a proton- conducting material production: starting from the synthesis of a simple unit – a monomer, continuing with polymerization and overall estimation of the polymer performance at laboratory scale, and ending with production of the required material of commercial quantity and testing in real conditions. All the steps, except the latest, were performed in LEPMI, the up-scaling was carried out in LEPMI and ERAS Labo. The measurements of small angle X- ray scattering (SAXS) were performed in INAC SPrAM CEA with the help of Arnaud De Geyer and Emilie Dubard under the direction of Dr. Sandrine Lyonnard. The current work would not be possible without the guidance of Dr. Cristina Iojoiu and Prof. Jean-Yves Sanchez, whom I thank sincerely to. I express my gratitude to Serge Vidal for the sponsorship of my work, and equally to the staff of ERAS Labo, especially to Lionel Ogier and Laurent Palmonari, for cooperation. Thanks to Dr. Sandrine Lyonnard, Arnaud De Geyer, Emilie Dubard and Matthieu Fumagalli the X-ray analysis was performed and helpful discussion was provided. I would like to express my gratitude to the members of the evaluation committee for their time and important corrections that improved the current manuscript. I thank to all the colleagues and friends I had an opportunity to work with and to share the nice moments of my stay in Grenoble. And finally, the cordial support of my family and best friends during all the period of the PhD thesis helped to overcome all the difficulties and to arrive to this final point of the defense to obtain a degree of the Philosophy Doctor. I express my deep love and thank to my dearest people for this precious contribution. ix Contents List of abbreviations .................................................................................................................. xi Introduction ................................................................................................................................ 1 Chapter 1. State of the art ........................................................................................................... 5 1.1. Polyaromatics with sulfonic acid directly attached to a backbone........................... 8 1.1.1. Synthesis by post-sulfonation ........................................................................... 8 1.1.2. Synthesis by condensation of a disulfonated monomer. Random and block- copolymers with SO3H in ortho-to-ether position .......................................................... 9 1.1.3. Ionomers with SO3H bonded in other than ‘ortho-to-ether’ position ............. 14 1.2. Polyaromatics with sulfonic acid on a phenyl spacer ............................................ 18 1.3. Polyaromatics with sulfonic acid on aromatic bulky structures ............................. 21 1.3.1. On a fluorene .................................................................................................. 21 1.3.2. On other multiphenylene structures ................................................................ 25 1.4. Polyaromatics with sulfonic acid on a long spacer ................................................ 28 1.4.1. C(O)PhSO3H and derivatives as pendent chains ............................................ 28 1.4.2. O(CH2)xSO3H as a pendent chain ................................................................... 30 1.5. Polyaromatics with sulfonic acid on a perfluorinated spacer ................................. 31 1.5.1. Y(CF2)xSO3H as a pendent chain .................................................................... 31 1.5.2. Y(CF2)xSO2NHSO2CF3 as a pendent chain .................................................... 34 Chapter 2. Synthesis part. Discussion ...................................................................................... 37 2.1. Synthesis of monomers .......................................................................................... 37 2.1.1. Synthesis of an ionic function 1a .................................................................... 39 2.1.2. Copper-mediated coupling .............................................................................. 42 2.1.3. Synthesis of the S-containing ionic intermediate 4e ....................................... 48 2.1.4. Demethylation-hydrogenation of ionic intermediates 3a and 4e .................... 49 2.1.5. Purity of the monomers ................................................................................... 54 2.2. Synthesis of polymers ............................................................................................ 57 2.2.1. Polymerization of the monomer 2................................................................... 59 2.2.2. Polymerizations of the monomers 3 and 4 ...................................................... 64 2.2.3. Synthesis of ionomers by copolymerization of two ionic monomers ............. 83 Chapter 3. Characterization of ionomers .................................................................................. 88 3.1. Properties of the (PAE)s series I2 and I4 ............................................................... 88 3.1.1. Thermal stability ............................................................................................. 89 3.1.2. Calorimetric analysis ...................................................................................... 92 x 3.1.3. Thermo-mechanical analysis ........................................................................ 101 3.1.4. Bulk morphology .......................................................................................... 107 3.1.5. Water uptake................................................................................................. 114 3.1.6. Conductivity ................................................................................................. 115 3.1.7. Oxidative stability test (OST) ....................................................................... 118 3.2. Properties of random and block-(PAES)s series I3 and I5 .................................. 122 3.2.1. Thermal stability........................................................................................... 122 3.2.2. Calorimetric analysis .................................................................................... 124 3.2.3. Thermo-mechanical analysis ........................................................................ 128 3.2.4. Bulk morphology .......................................................................................... 135 3.2.5. Water uptake................................................................................................. 139 3.2.6. Conductivity ................................................................................................. 141 3.2.7. Oxidative stability test (OST) ....................................................................... 145 3.3. Properties of the random (PAES)s series I1 and I3 ............................................. 146 3.3.1. Thermo-mechanical properties ..................................................................... 147 3.3.2. Water uptake and conductivity ..................................................................... 148 3.4. Properties of the ionomers by copolymerization of two ionic monomers ........... 149 3.4.1. Thermo-mechanical properties, morphology ............................................... 150 3.4.2. Water uptake and conductivity ..................................................................... 151 Conclusions ............................................................................................................................ 154 Perspectives ............................................................................................................................ 156 Characterization techniques ................................................................................................... 157 Annexes .................................................................................................................................. 163 References .............................................................................................................................. 179 xi List of abbreviations Abbreviation Name AFM Atomic force microscopy DMA Dynamic mechanical analysis DMFC Direct methanol fuel cell DSC Differential scanning calorimetry FC Fuel cell IEC Ion exchange capacity MW Molecular weight NMR Nuclear magnetic resonance OST Oxidative stability test PAE Poly(arylene ether) PAEK Poly(arylene ether ketone) PAEKS Poly(arylene ether ketone sulfone) PAES Poly(arylene ether sulfone) PAN Poly(acrylo nitrile) PDI uploads/Litterature/ danyliv-2015-archivage.pdf

  • 20
  • 0
  • 0
Afficher les détails des licences
Licence et utilisation
Gratuit pour un usage personnel Attribution requise
Partager